Optimistic Linear Support and Multi-objective POMDPs

Diederik M. Roijers Informatics Institute University of Amsterdam

in collaboration with: Shimon Whiteson and Frans Oliehoek

Multiple objectives

Maximize coverage while minimizing damage

Outline

- Multi-objective decision problems
- Convex coverage sets
- Optimistic Linear Support
- Approximate single-objective solvers
- Multi-objective POMDPs
- OLS for MOPOMDPs
- Scalarized Perseus
- α-matrix reuse
- Experimental results

Do we need multi-objective models?

Sutton's Reward Hypothesis: "All of what we mean by goals and purposes can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (reward)."

 $Source: \ http://rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html$

- $V:\Pi \to \mathbb{R}$
- $V^{\pi} = E_{\pi}[\sum_t r_t]$
- $\pi^* = \max_{\pi} V^{\pi}$

Do we need multi-objective models?

Sutton's Reward Hypothesis: "All of what we mean by goals and purposes can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (reward)."

Source: http://rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html

- $V:\Pi \to \mathbb{R}$
- $V^{\pi} = E_{\pi}[\sum_t r_t]$
- $\pi^* = \max_{\pi} V^{\pi}$

Do we need multi-objective models?

Sutton's Reward Hypothesis: "All of what we mean by goals and purposes can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (reward)."

Source: http://rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html

- $V:\Pi\to\mathbb{R}$
- $V^{\pi} = E_{\pi}[\sum_t r_t]$
- $\pi^* = \max_{\pi} V^{\pi}$

The weak argument: real-world problems are multi-objective!

$$\mathbf{V}:\Pi \to \mathbb{R}^n$$

- Objection: why not just scalarize?
- Scalarization function projects multi-objective value to a scalar;

$$V_{\mathbf{w}}^{\pi} = f(\mathbf{V}^{\pi}, \mathbf{w})$$

$$V_{\mathbf{w}}^{\pi} = \sum_{i=1}^{n} w_i V_i^{\pi} = \mathbf{w} \cdot \mathbf{V}^{\pi}$$

- A priori prioritization of the objectives
- The weak argument is necessary but not sufficient

The weak argument: real-world problems are multi-objective!

$$\mathbf{V}:\Pi \to \mathbb{R}^n$$

- Objection: why not just scalarize?
- Scalarization function projects multi-objective value to a scalar;

$$V_{\mathbf{w}}^{\pi} = f(\mathbf{V}^{\pi}, \mathbf{w})$$

$$V_{\mathbf{w}}^{\pi} = \sum_{i=1}^{n} w_i V_i^{\pi} = \mathbf{w} \cdot \mathbf{V}^{\pi}$$

- A priori prioritization of the objectives
- The weak argument is necessary but not sufficient

The weak argument: real-world problems are multi-objective!

$$\mathbf{V}:\Pi \to \mathbb{R}^n$$

- Objection: why not just scalarize?
- Scalarization function projects multi-objective value to a scalar:

$$V_{\mathbf{w}}^{\pi} = f(\mathbf{V}^{\pi}, \mathbf{w})$$

$$V_{\mathbf{w}}^{\pi} = \sum_{i=1}^{n} w_i V_i^{\pi} = \mathbf{w} \cdot \mathbf{V}^{\pi}$$

- A priori prioritization of the objectives
- The weak argument is necessary but not sufficient

The weak argument: real-world problems are multi-objective!

$$\mathbf{V}:\Pi\to\mathbb{R}^n$$

- Objection: why not just scalarize?
- Scalarization function projects multi-objective value to a scalar:

$$V_{\mathbf{w}}^{\pi} = f(\mathbf{V}^{\pi}, \mathbf{w})$$

$$V_{\mathbf{w}}^{\pi} = \sum_{i=1}^{n} w_i V_i^{\pi} = \mathbf{w} \cdot \mathbf{V}^{\pi}$$

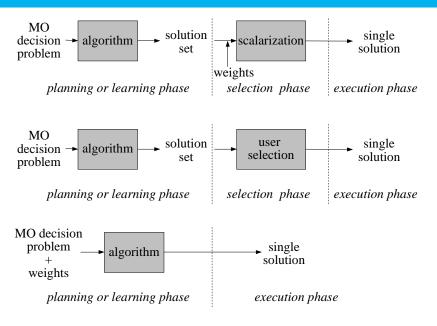
- A priori prioritization of the objectives
- The weak argument is necessary but not sufficient

• *The strong argument*: a priori scalarization is sometimes impossible, infeasible, or undesirable

Instead produce the coverage set of undominated solutions

• Three scenario's

Motivating scenarios



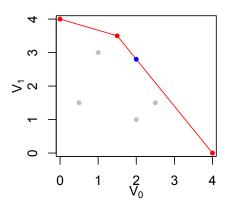
Utility-based approach

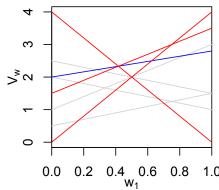
- Scalarization is explicit or implicit, but always happens
- Scalarization function: $V_{\mathbf{w}} = f(\mathbf{V}, \mathbf{w})$
- Choose the solution set by:
 - What do we know about f?
 - Stochastic policies allowed?
 - Non-stationary policies allowed?

Utility-based approach

- Scalarization is explicit or implicit, but always happens
- Scalarization function: $V_{\mathbf{w}} = f(\mathbf{V}, \mathbf{w})$
- Choose the solution set by:
 - What do we know about f?
 - Stochastic policies allowed?
 - Non-stationary policies allowed?

Convex coverage set (CCS)





- Scalarization function: $f(\mathbf{V}^{\pi}, \mathbf{w}) = \mathbf{w} \cdot \mathbf{V}^{\pi}$
- Scalarized value function: $V^*_{CCS}(\mathbf{w}) = \max_{\pi} \mathbf{w} \cdot \mathbf{V}^{\pi}$
- Piece-wise linear and convex (PWLC) function

Problem Taxonomy

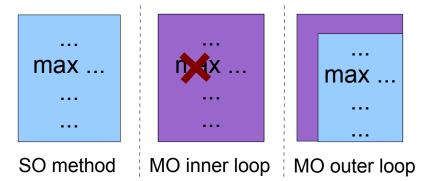
	single policy (known weights)		multiple policies (unknown weights or decision support)	
	deterministic	stochastic	deterministic	stochastic
linear scalarization	one deterministic stationary policy		convex coverage set of deterministic stationary policies	
monotonically increasing scalarization	one deterministic non- stationary policy	one mixture policy of two or more deterministic stationary policies	Pareto coverage set of deterministic non- stationary policies	convex coverage set of deterministic stationary policies

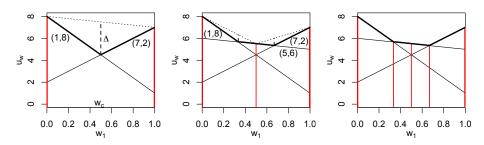
Outline

- Multi-objective decision problems
- Convex coverage sets
- Optimistic linear support
- Approximate single-objective solvers
- Multi-objective POMDPs
- OLS for MOPOMDPs
- Scalarized Perseus
- α-matrix reuse
- Experimental results

October 20, 2015

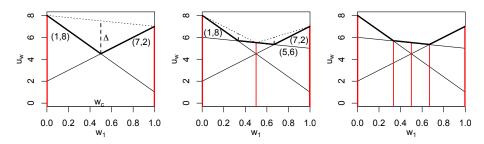
- Optimistic Linear Support (OLS)
- Outer loop approach: series scalarized instances with different w



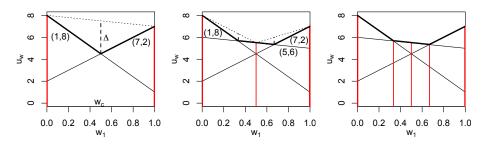


- Terminates after checking only a finite number of weights w
- Exact solutions if single-objective solver is exact
- Anytime

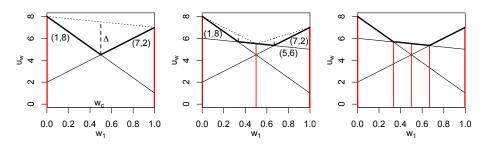
October 20, 2015



- \bullet Terminates after checking only a finite number of weights \boldsymbol{w}
- Exact solutions if single-objective solver is exact
- Anytime



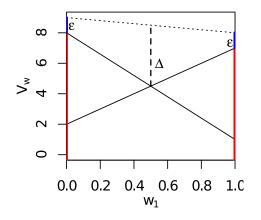
- ullet Terminates after checking only a finite number of weights ullet
- Exact solutions if single-objective solver is exact
- Anytime



- ullet Terminates after checking only a finite number of weights ullet
- Exact solutions if single-objective solver is exact
- Anytime

October 20, 2015

- ε -approximate single-objective solver
- OLS produces an ε-CCS

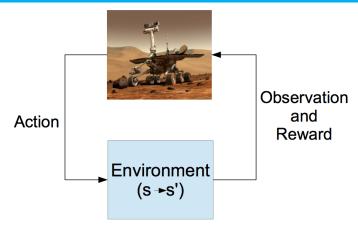


Outline

- Multi-objective decision problems
- Convex coverage sets
- Optimistic linear support
- Approximate single-objective solvers
- Multi-objective POMDPs
- OLS for MOPOMDPs
- Scalarized Perseus
- α-matrix reuse
- Experimental results

October 20, 2015

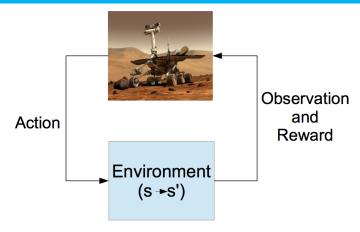
Multi-objective Partially Observable MDPs



- Multiple objectives
- Vector-valued policy values
- Set of all possibly optimal policies

$$V_{\mathbf{w}}^{\pi} = \mathbf{w} \cdot \mathbf{V}^{\pi} = w_1 V_{coverage}^{\pi} + w_2 V_{damage}^{\pi}$$

Multi-objective Partially Observable MDPs



- Multiple objectives
- Vector-valued policy values
- Set of all possibly optimal policies

$$V_{f w}^{\pi} = f w \cdot f V^{\pi} = w_1 V_{coverage}^{\pi} + w_2 V_{damage}^{\pi}$$

Approach

- Optimistic Linear Support
- Opens way to efficient MOPOMDP planning
- Solve as series of scalarized POMDPs
- Point-based POMDP planners
- Smart choices of scalarized instances

Optimistic linear support for POMDPs

• Point-based methods represent value by α -vectors

$$\alpha = \begin{pmatrix} V(s_1) \\ V(s_2) \\ V(s_3) \\ V(s_4) \end{pmatrix}$$

•
$$V^{\alpha}(b_0) = b_0 \cdot \alpha$$

• Adapt point-based methods to return α -matrices

$$A = \begin{pmatrix} obj \ 1 : & obj \ 2 : \\ V_1(s_1) & V_2(s_1) \\ V_1(s_2) & V_2(s_2) \\ V_1(s_3) & V_2(s_3) \\ V_1(s_4) & V_2(s_4) \end{pmatrix}$$

•
$$V^A(b_0) = b_0 A$$

Adapted point-based backups

Optimistic linear support for POMDPs

• Point-based methods represent value by α -vectors

$$\alpha = \begin{pmatrix} V(s_1) \\ V(s_2) \\ V(s_3) \\ V(s_4) \end{pmatrix}$$

•
$$V^{\alpha}(b_0) = b_0 \cdot \alpha$$

• Adapt point-based methods to return α -matrices

$$A = \begin{pmatrix} obj \ 1 : & obj \ 2 : \\ V_1(s_1) & V_2(s_1) \\ V_1(s_2) & V_2(s_2) \\ V_1(s_3) & V_2(s_3) \\ V_1(s_4) & V_2(s_4) \end{pmatrix}$$

- $\mathbf{V}^{A}(b_{0}) = b_{0}A$
- Adapted point-based backups

Multi-objective Point-based backups

Back-projection of α -vectors $\alpha_i \in \mathcal{A}_k$:

A_i
$$\in A_k$$
, for a *given* **w**:

$$g_i^{a,o}(s) = \sum_{s' \in S} O(a, s', o) T(s, a, s') \alpha_i(s')$$

$$\mathbf{G}_{i}^{a,o}(s) = \sum_{s' \in S} O(a, s', o) T(s, a, s') \mathbf{A}_{i}(s')$$

$$\alpha_{k+1}^{b,a} = r^a + \gamma \sum_{o \in \Omega} rg \max_{g^{a,o}} b \cdot g^{a,o}$$

$$\mathbf{A}_{k+1}^{b,a} = r^a + \gamma \sum_{o \in \Omega} \arg\max_{G^{a,o}} b \ \mathbf{G}^{a,o} \mathbf{w}$$

$$\mathtt{backup}(\mathcal{A}_k,b) = \argmax_{\alpha_{k+1}^{b,a}} b \cdot \alpha_{k+1}^{b,a}$$

$$\mathtt{backupMO}(\mathcal{A}_k,b,\mathbf{w}) = rg\max_{\mathbf{A}_{k+1}^{b,a}} \mathbf{b} \mathbf{A}_{k+1}^{a,b} \mathbf{w}$$

Multi-objective Point-based backups

Back-projection of α -vectors $\alpha_i \in \mathcal{A}_k$:

Back-projection of α-matrices
$$\mathbf{A}_i \in \mathcal{A}_k$$
, for a given \mathbf{w} :

$$g_i^{a,o}(s) = \sum_{s' \in S} O(a, s', o) T(s, a, s') \alpha_i(s')$$

$$\mathbf{G}_{i}^{a,o}(s) = \sum_{s' \in S} O(a,s',o) T(s,a,s') \mathbf{A}_{i}(s')$$

$$\alpha_{k+1}^{b,a} = r^a + \gamma \sum_{o \in \Omega} rg \max_{g^{a,o}} b \cdot g^{a,o}$$

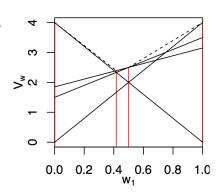
$$\mathbf{A}_{k+1}^{b,\mathbf{a}} = r^{\mathbf{a}} + \gamma \sum_{o \in \Omega} \operatorname*{arg\,max}_{\mathbf{G}^{\mathbf{a},o}} \mathbf{w} \label{eq:alpha_k+1}$$

$$\texttt{backup}(\mathcal{A}_k, b) = \argmax_{\alpha_{k+1}^{b,a}} b \cdot \alpha_{k+1}^{b,a}$$

$$\mathtt{backupMO}(\mathcal{A}_k,b,\mathbf{w}) = rg \max_{\mathbf{A}_{k+1}^{b,a}} \mathbf{b} \mathbf{A}_{k+1}^{a,b} \mathbf{w}$$

Optimistic linear support with alpha reuse

- Starting from scratch for each w is inefficient
- Intuition: when w and w' are close, so are the optimal policies and values
- Hot start point-based planner using α -matrices
- More and more effective as w's lie closer together



Theoretical results

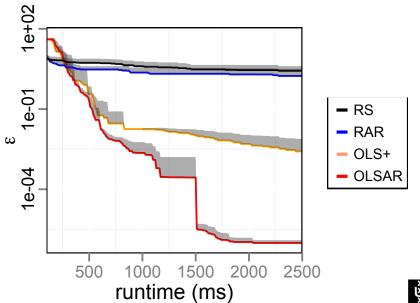
Theorem

OLSAR requires a finite number of calls to the point-based solver to converge.

Theorem

OLSAR produces an ε -approximate solution set. ε is inherited from the single-objective method.

Sample of results: 3-objective tiger



Conclusions

- Use point-based methods for MOPOMDPs
- First method that reasonably scales
- Bounded approximation
- Alpha reuse is key to keeping MOPOMDPs tractable

$\mathtt{OLS}(m, \mathtt{SolveSingleObjective}, \epsilon) \ // \ \mathsf{Without} \ \mathsf{reuse}$

```
S \leftarrow \emptyset //partial CCS
Q \leftarrow an empty priority queue
foreach extremum of the weight simplex w<sub>e</sub> do
     Q.add(\mathbf{w}_e, \infty) // add extrema with infinite priority
while \neg Q.isEmpty() \land \neg timeOut do
     \mathbf{w} \leftarrow \mathsf{Q.pop}()
     V \leftarrow SolveSingleObjective(m, w)
     if \mathbf{V} \notin S then
           S \leftarrow S \cup \{\mathbf{V}\}
           delete obsolete corner weights from Q
            W_{\mathbf{V}} \leftarrow the new corner weights that involve V
           foreach w \in W_V do
                 \Delta_r(\mathbf{w}) \leftarrow \text{max. possible rel. improvement at } \mathbf{w}
                if \Delta_r(\mathbf{w}) > \epsilon then
                 \mid \hat{\mathbf{Q}}.add(\mathbf{w}, \Delta_r(\mathbf{w}))
```

return S and the highest $\Delta_r(\mathbf{w})$ left in Q

OCPerseus (A, B, \mathbf{w}, η)

```
\begin{array}{l} \mathcal{A}' \leftarrow \mathcal{A}; \\ \mathcal{A} \leftarrow \{-\vec{\infty}\}; \\ \mathcal{A} \leftarrow \{-\vec{\infty}\}; \\ \mathcal{A} \leftarrow \{-\vec{\infty}\}; \\ \mathbf{while} \ \max_{b} \max_{\mathbf{A}' \in \mathcal{A}'} b\mathbf{A}'\mathbf{w} - (\max_{\mathbf{A} \in \mathcal{A}} b\mathbf{A}\mathbf{w}) > \eta \ \mathbf{do} \\ \\ \mathcal{A} \leftarrow \mathcal{A}'; \ \mathcal{A}' \leftarrow \emptyset \ ; \ \mathcal{B}' \leftarrow \mathcal{B}; \\ \mathbf{while} \ \mathcal{B}' \neq \emptyset \ \mathbf{do} \\ \\ \\ \mathbf{Randomly \ select} \ b \ from \ \mathbf{B}'; \\ \mathbf{A} \leftarrow \text{backupMO}(\mathcal{A}, b, \mathbf{w}); \\ \\ \mathcal{A}' \leftarrow \mathcal{A}' \cup \{ \ \text{arg max} \ b\mathbf{A}'\mathbf{w} \}; \\ \\ \mathcal{A}' \leftarrow \mathcal{A}' \cup \{ \ \text{arg max} \ b\mathbf{A}'\mathbf{w} < \max_{\mathbf{A} \in \mathcal{A}} b\mathbf{A}\mathbf{w} \}; \\ \\ \mathcal{B}' \leftarrow \{b \in \mathcal{B}': \max_{\mathbf{A}' \in \mathcal{A}'} b\mathbf{A}'\mathbf{w} < \max_{\mathbf{A} \in \mathcal{A}} b\mathbf{A}\mathbf{w} \}; \\ \\ \mathbf{return} \ \mathcal{A}'; \end{array}
```


$\mathtt{OLSAR}(b_0, \eta) \ // \ \mathsf{With} \ \mathsf{Reuse}$

```
X \leftarrow \emptyset; // partial CCS of multi-objective value vectors \mathbf{V}_{b_0}
WV_{old} \leftarrow \emptyset:
                                         // searched weights and scalarized values
Q \leftarrow priority queue with weights to search;
Add extrema of the weight simplex to Q with infinite priority;
A_{all} \leftarrow a set of \alpha-matrices forming a lower bound on the value;
B \leftarrow \text{set of sampled belief points (e.g., by random exploration)};
while \neg Q.isEmpty() \land \neg timeOut do
     \mathbf{w} \leftarrow Q.\text{dequeue}();
                                                                 // Retrieve a weight vector
     A_r \leftarrow select the best A from A_{all} for each b \in B, given w;
     A_{\mathbf{w}} \leftarrow \text{solveScalarizedPOMDP}(A_r, B, \mathbf{w}, \eta);
     V_{b_0} \leftarrow \max_{\mathbf{A} \in \mathcal{A}_{w}} b_0 \mathbf{A} \mathbf{w};
     A_{all} \leftarrow A_{all} \cup A_{w}:
     WV_{old} = WV_{old} \cup \{(\mathbf{w}, \mathbf{w} \cdot \mathbf{V}_{b_0})\}:
     if V_{h_0} \notin X then
        X \leftarrow X \cup \{\mathbf{V}_{b_0}\};
          W \leftarrow compute new corner weights and maximum possible improvements
          (\mathbf{w}, \Delta_{\mathbf{w}}) using WV_{old} and X;
         Q.addAll(W);
```

return X;

Cheng's theorem

Theorem

(Cheng 1988) The maximum value of:

$$\max_{\mathbf{w},\mathbf{u}\in CCS} \min_{\mathbf{v}\in S} \mathbf{w} \cdot \mathbf{u} - \mathbf{w} \cdot \mathbf{v},$$

i.e., the maximal improvement to S by adding a vector to it, is at one of the corner weights.

Optimistic CCS

Definition

An optimistic hypothetical CCS, \overline{CCS} is a set of payoff vectors that yields the highest possible scalarized value for all possible \mathbf{w} consistent with finding the vectors S at the weights in \mathcal{W} .

For a given \mathbf{w} , the scalarized value of $u_{\overline{CCS}}^*(\mathbf{w})$ can be found by solving the following linear program:

$$\begin{aligned} & \text{max } \mathbf{w} \cdot \mathbf{v} \\ & \text{subject to} & & \mathcal{W} \mathbf{v} \leq \mathbf{u}_{\mathcal{S},\mathcal{W}}^*, \end{aligned}$$

where $\mathbf{u}_{S,\mathcal{W}}^*$ is a vector containing $u_S^*(\mathbf{w}')$ for all $\mathbf{w}' \in \mathcal{W}$.

