
Heuristic Coordination in Cooperative
Multi-Agent Reinforcement Learning

Ramon Petri1, Eugenio Bargiacchi2,
Huib Aldewereld1, and Diederik M. Roijers1,2

1 HU University of Applied Sciences, Utrecht, The Netherlands
ramon.petri@student.hu.nl &

{huib.aldewereld,diederik.yamamoto-roijers}@hu.nl
2 Vrije Universiteit Brussel, Brussels, Belgium

{eugenio.bargiacchi,diederik.roijers}@vub.be

Abstract. Key to reinforcement learning in multi-agent systems is the
ability to exploit the fact that agents only directly influence only a small
subset of the other agents. Such loose couplings are often modelled us-
ing a graphical model: a coordination graph. Finding an (approximately)
optimal joint action for a given coordination graph is therefore a central
subroutine in cooperative multi-agent reinforcement learning (MARL).
Much research in MARL focuses on how to gradually update the pa-
rameters of the coordination graph, whilst leaving the solving of the
coordination graph up to a known typically exact and generic subrou-
tine. However, exact methods – e.g., Variable Elimination – do not scale
well, and generic methods do not exploit the MARL setting of grad-
ually updating a coordination graph and recomputing the joint action
to select. In this paper, we examine what happens if we use a heuristic
method, i.e., local search, to select joint actions in MARL, and whether
we can use outcome of this local search from a previous time-step to
speed up and improve local search. We show empirically that by using
local search, we can scale up to many agents and complex coordination
graphs, and that by reusing joint actions from the previous time-step
to initialise local search, we can both improve the quality of the joint
actions found and the speed with which these joint actions are found.

Keywords: Coordination Graphs · Local Search · Multi-agent Rein-
forcement Learning · Multi-agent Thompson Sampling

1 Introduction

Coordination is an important aspect of everyday life – whether playing foot-
ball, or participating in traffic. In artificial intelligence, coordination between
multiple artificial agents is therefore a popular topic, with applications ranging
from robotic rescue operations [Visser et al., 2014, Chalup et al., 2019] to main-
tenance scheduling on highways between multiple contractors [Scharpff et al.,
2016, Scharpff, 2020].



2 R. Petri et al.

Key to keeping cooperative multi-agent coordination tractable is to exploit
so-called loose couplings, i.e., the property that individual agents typically only
directly affect a small subset of the other agents. For example, imagine a wind
farm, where each agent controls the yaw of a wind turbines [Verstraeten, 2021].
A turbine produces turbulence in its wake, which can affect the wind turbines
behind it. The turbines behind the first one may in turn affect other wind tur-
bines, ultimately still requiring coordination between the entire wind farm, but
the first turbine only directly affects the ones behind it. Such loose couplings can
be expressed using a graphical reward structure called a coordination graph [Ver-
straeten et al., 2021]. In coordination graphs, direct influence between agents is
modelled as a local reward function, that has the joint action space of the agents
affecting and being affected as its domain.

When the coordination graphs and all its local reward functions are known,
the optimal joint action can be found using non-serial dynamic programming
[Bertele and Brioschi, 1972], or as it is more commonly known in the agents
community, variable elimination (VE) [Guestrin et al., 2002]. Variable elimina-
tion is an exact algorithm [Rosenthal, 1977], but due to the inherent hardness
of solving coordination graphs, scales poorly in the connectivity of a graph, and
typically also in the number of agents.

When the ground truth local reward functions in a coordination graph are
unknown to the agents, we are in the multi-objective multi-armed bandit set-
ting [Verstraeten et al., 2020]. In this setting, the local reward functions must be
learned through interaction with the environment (e.g., the wind farm) [Bargiac-
chi et al., 2018]. A state-of-the-art algorithm for doing so is called multi-agent
Thompson sampling (MATS) [Verstraeten et al., 2020]. MATS uses VE as a
subroutine to find the optimal joint action for the graphs sampled before each
interaction with the environment. As such, MATS scales poorly in the connec-
tivity of the coordination graphs, and typically also the number of agents in the
graph.

In this paper, we study the effect of using local search (LS) [Russell and
Norvig, 2005] algorithms as a subroutine in multi-agent Thompson sampling.
These heuristic algorithms scale extremely well in the number of agents and
the connectivity of the coordination graphs, but they are of course not exact.
We can therefore expect to incur more regret [Verstraeten et al., 2020], i.e., a
larger cumulative difference between the optimal team rewards and the rewards
resulting from the joint actions that are performed, then when using VE. We
do however expect a large gain in runtime, especially for increasingly complex
coordination graph.

We observe that when we use LS as a subroutine inside of MATS, there
are some aspects that we can exploit. Firstly, as the newly obtained information
obtained at each timestep has a relatively smaller impact on the posterior beliefs
over the true mean rewards, the sampled coordination graphs at each timestep
are increasingly similar. Secondly, at each timestep, we produce a joint action to
execute using LS. Finally, local search algorithms can benefit from initialization
with a good initial solution, i.e., an educated guess for a joint action. We therefore



Heuristic Coordination in Cooperative Multi-Agent Reinforcement Learning 3

propose to reuse the joint action found by LS at the previous timestep as the
starting point for LS in the next timestep. Using this together with an iterative
search scheme, this leads to our reusing iterative local search (RILS) algorithm.
We show experimentally that RILS is able to find good approximate solutions
for coordination graphs. When used in MATS, this leads to higher regret, but
at a fraction of the runtime of MATS with VE as a subroutine. Furthermore,
the difference in regret becomes smaller as the coordination graphs become more
complex, while the difference in runtime becomes larger. We therefore conclude
that RILS is a suitable algorithm to scale up to complex coordination graphs in
multi-agent multi-armed bandits.

2 Background

A coordination graph (CoG) models the (sparse) relationships between multiple
cooperative agents. In a coordination graph, each agent is represented by an
individual node. An edge between two nodes indicates that coordination between
their associated agents is required to achieve optimal behaviour. We note that
while edges in coordination graphs are often represented in a pairwise fashion,
we use a hyper-edge representation, where each edge can connects several agents
at once [Roijers et al., 2015b]. Each hyper-edge is associated to a local reward
function, which specifies the rewards for a subset of agents.

In planning, the local reward functions specify a deterministic (or expected)
local reward given a local joint action by the connected agents [Roijers, 2016].
In this paper, however, we are concerned with a reinforcement learning setting
in which the local reward functions are stochastic, and specified using a dis-
tribution over local rewards. This is called a multi-agent multi-armed bandit
(MAMAB) [Bargiacchi et al., 2018]. More formally, a multi-agent multi-armed
bandit (MAMAB), is a tuple 〈D,A, f〉 where:

– D is the set of all m agents.
– A = A1 × . . .×Am is the joint action space.
– f : A → R is the global reward function, i.e. a random function3 associ-

ating each full joint action to a sampled reward. In a MAMAB, f can be
decomposed into a set of ρ independent local reward functions, such that
f(a) =

∑ρ
e=1 f

e(ae). Note that each of these constituent components are
again random functions.

Intuitively, it should be possible to exploit the structure of f and the co-
ordination graph to quickly learn the local reward functions, without incurring
in an exponential regret from the large full joint-action space of a multi-agent
setting (the curse of dimensionality). Multi-agent Thompson Sampling (MATS)
[Verstraeten et al., 2020] is an algorithm that does precisely this: it maintains a

3 A random function is the function equivalent of a random variable, i.e., a function
which is defined in terms of an experiment of which the outcome varies according to
a given probability distribution. As such evaluating a random function for the same
input twice may yield a different output.



4 R. Petri et al.

posterior distribution of the mean rewards for each possible local joint action,
which it samples when it needs to act in the MAMAB. Such a sample leads to
a coordination graph with non-stochastic rewards. The full joint action selected
is then the one that maximizes the reward across all sampled local arms. This
strategy provably [Verstraeten et al., 2020] results in a regret that is linear in
the number of agents, rather than exponential.

In order to select the best joint action, MATS must maximize across all
local arms in a computationally efficient manner. To do this, MATS relies on
an exact algorithm that was originally devised to marginalize discrete variables
in probabilistic graphical models. This is not surprising, as the concept of a
coordination graph is analogous to an undirected graphical model.

In particular, MATS uses a well-known algorithm called Variable Elimina-
tion (VE) [Bertele and Brioschi, 1972, Rosenthal, 1977, Guestrin et al., 2002].
Originally developed to perform exact inference, VE can be used to determine
the optimal action of multiple agents maximizing a factored reward function, in
our case f . VE is an iterative algorithm, which progressively removes each agent
from the coordination graph after computing its best response w.r.t. its neigh-
bors, i.e., for each local joint action of the neighbors it determines the action
that maximizes the total reward of the group. The advantage of VE over naive
brute force search is in its computational complexity, which is combinatorial on
the induced width of the graph, i.e., the largest local action space considered
during the elimination process.

The computational complexity of VE for sparse coordination graphs is much
lower than naive brute forcing, which is exponential in the number of agents.
However, VE still tends to perform poorly when dealing with large number of
agents, as the induced width typically increases with the number of agents, albeit
much slower than the number of agents itself.In turn, this prevents using the
MATS algorithm in large scale bandits, unless VE is replaced by an approximate
selection technique.

A popular approximate optimization algorithm that is called Iterative Local
Search (ILS). This technique is based on Local Search (LS) as described by [Rus-
sell and Norvig, 2005] and has an extension in the form of an iterative variant
(ILS) as described by [Lourenço et al., 2003]. Local search algorithms take an
optimisation problem – such as a coordination graph – and find approximate
solutions by starting with a random solution, and looking in the neighborhood
of the current solution, as defined by a set of allowed small mutations, for im-
provements. Iteratively applying such improvements until no improvements can
be found in the neighborhood leads to a so-called local optimum. ILS can escape
such local optima, by performing larger random mutations and re-applying local
search.

3 Algorithms

In this paper we investigate the potential of applying local search and iterative
local search schemes as an approximate subroutine in MATS [Verstraeten et al.,



Heuristic Coordination in Cooperative Multi-Agent Reinforcement Learning 5

2020] to replace the exact VE subroutine. First, we define how local search can
be applied to coordination graphs. Secondly, we create an algorithm that per-
forms iterative local search while exploiting the reinforcement learning setting.
Specifically, at each timestep, the MATS algorithm learns more about the local
rewards functions, and updates its local posterior mean reward distributions, be-
fore re-sampling a coordination graph to select the next timestep’s joint action
(using the VE or local search subroutines). We make the following observations
about the learning process of MATS using (iterative) LS as a subroutine:

– The sampled coordination graphs at each timestep are increasingly similar.
This is because the new information gathered at each timestep has a dimin-
ishing impact on the posterior mean reward distributions with respect to
the information already gathered. Morevoer, over time, the posterior mean
reward distributions become increasingly certain about what the local mean
rewards ought to be, leading to narrower distributions and therefore more
similar samples.

– At each timestep, we produce a joint action to execute.
– Local search algorithms can benefit from initialization with a good initial

solution.

Combining these observations, we observe that it is likely beneficial to reuse the
joint action found and executed at the previous timestep as the initial starting
solution for (iterative) local search in the current timestep. We propose an al-
gorithm - the Reusing Iterative Local Search algorithm (RILS) - that does so.
We thus exploit the multi-agent reinforement learning setting to speed up our
heuristic search subroutine.

3.1 Local Search for Coordination Graphs

The Local Search (LS) algorithm for coordination graphs (Algorithm 1) works by
incrementally updating a joint action with local improvements, i.e., changes in
actions for a single agent that improve the global reward. Starting from a random
joint action (an array of individual actions for each agent), ar, the algorithm
goes through all the agents in the graph in random order and for each agent, v,
through all the actions, a available to that agent, to check whether replacing ar[v]
with a yields an improvement. We note that to do so, the algorithm only needs
to calculate the difference, ∆, in reward for the sum of local reward functions
that have agent v in scope. This therefore takes only a fraction of the time
of a full evaluation of ar over the entire graph. If that ∆ is bigger than zero,
i.e., a is an improvement upon the current action of agent v, ar[v] is changed
to a. The algorithm uses a flag changed to check whether the last pass over
the agents yielded an improvement; it is set to continue the while loop until
no higher rewards can be found. When no local improvements upon ar can be
found by updating the action of any of the agents in the coordination graph, LS
has converged to a local optimum and the total team reward is returned. The
total team reward is evaluated by a function named evalTeamReward that sums



6 R. Petri et al.

over all the local reward functions. This makes evalTeamReward an expensive
operation, and it is therefore key to the performance of LS as a subroutine within
MATS that this happens only once per call to LS.

Algorithm 1 Local Search

1: procedure Local Search(startAction)
2: ar ← startAction or a random joint action if startAction is null
3: changed← true
4: while changed do
5: changed← false
6: for v ∈ agents do . In a different random order each iteration.
7: for a ∈ actions[v] do
8: ∆← evaluateLocalActionChange(ar, v, a)
9: if ∆ > 0 then

10: ar[v]← a
11: changed← true

12: end if
13: end for
14: end for
15: end while
16: return (ar, evalTeamReward(ar))

LS can be used by itself as a subroutine within MATS. In this case, LS then starts
from a random joint action each time that it is called. While this is no doubt a
highly efficient heuristic, it lacks in two key aspects: the local optima achieved
do not converge to the optimal joint action over time, due to the random nature
of LS, and, in the multi-agent reinforcement learning setting, we start anew at
each timestep to select a joint action, disregarding the information about how
good the joint action that LS found on the previous timestep was.

3.2 Reusing Iterative Local Search (RILS)

Iterative Local Search (ILS) uses Local Search as a subroutine to escape local
optima, by making larger randomized changes, called perturbations, to the so-
lution after LS runs into a local optimum and then rerunning LS to see whether
this leads to further improvements. Note that as this can in principle continue
indefinitely, typically a maximum number of iterations is set to limit the number
of trials in which ILS can maximize its result.

The added randomization uses a so called perturbation probability (PP),
i.e., with a probability PP each part of the solution is set to a random value.
For coordination graphs we employ local-reward-function-based perturbations,
which means that we iterate over all local reward functions, and with probability
PP, the actions for all agents in scope of the reward function are changed to a
random action. We chose this over an agent-based perturbation strategy, because



Heuristic Coordination in Cooperative Multi-Agent Reinforcement Learning 7

Algorithm 2 RILS

1: procedure Reusing Iterative Local Search(numOfTrials, PP, PRandom, pre-
viousAction)

2: if previousAction = Empty ∨ rn < PRandom then
3: ar ← randomAction()
4: else
5: ar ← previousAction

6: end if
7: val← evalTeamReward(ar)
8: for i← 0 to numOfTrials do
9: ac← ar

10: rn← randomnumber ∈ [0, 1]
11: if previousAction = Empty ∨ rn < PRandom then
12: ac← randomAction()
13: else
14: for Each local reward function fe do
15: rn← randomnumber ∈ [0, 1]
16: if rn < PP then
17: Change actions of all agents in scope of fe to a random action in ac.

18: end if
19: end for
20: ac′, val′ ← LS(ac) . Algorithm 1
21: if val′ > val then
22: ar ← ac′

23: val← val′

24: end if
25: end for
26: previousAction← ar
27: return ar, val

if the action of a single agent changes, without any actions of its neighbours
changing, LS will change this action straight back towards the previously found
local optimum.4

In order to exploit the multi-agent reinforcement learning setting in the
MATS algorithm, we propose Reusing Iterative Local Search (RILS) (Algorithm
2). The algorithm works by checking if a previousAction is available, from the
previous iteration of the MATS algorithm. If not (i.e., this is the first timestep of
MATS), the current joint action ar gets initialized with a random joint action.
If it is available, ar is initialized with the previousAction. Subsequently, ar is
evaluated to get its team reward, val. Note that it is necessary to re-evaluate
the previous joint action between timesteps, as MATS samples the local reward
functions each timestep, leading to slightly different local rewards.

4 In order to make sure, we did in fact try out the agent-based perturbation strategy
as well, but this indeed proved far less effective, so for the remainder of this paper
we only use the local-reward-function-based perturbation strategy.



8 R. Petri et al.

The main loop of RILS runs through a number of trials, numOfTrials, to
try and find better solutions than the previous joint action (or the randomly gen-
erated one). This is done by first perturbating ac using the previously described
local-reward-function-based perturbation strategy, after which it gets passed to
Algorithm 1: LS. If the new local optimum found by LS, ac′ with value val′

improves over the previous ar, this joint action ac′ replaces the current best, ar.

While iteratively improving upon the same joint action can be effective, and
can save a lot of runtime due to efficient initialisation, there is also a risk. Specif-
ically, RILS might get stuck in the same local optimum for a very long time,
especially if that local optimum turns out to be hard to escape by small random
perturbations. Therefore, RILS also has a very small probability, PRandom, to
start from a completely random solution at the beginning of its main loop.

When the number of trials are up, RILS stores the best found joint action,
ar in previousAction, and returns it along with its team reward, val.

4 Experiments

We now compare Local Search (LS, Algorithm 1) and Reusing Iterative Local
Search (RILS, Algorithm 2) against Variable Elimination (VE) [Guestrin et al.,
2002] as a subroutine within the Multi-Agent Thompson Sampling (MATS) al-
gorithm [Verstraeten et al., 2020], both in terms of regret and in terms of run-
time, for increasingly complex MOMABs. We use the implementations of VE
and MATS found in the AI-Toolbox [Bargiacchi et al., 2020]. Additionally, our
implementation of LS will be released in the same toolbox.

Our experiments are based on the Gem Mining problem from [Bargiacchi
et al., 2018, Verstraeten et al., 2020], which is adapted from the Mining Day
problem from [Roijers et al., 2015b], which is a multi-objective coordination
graph benchmark problem. Gem Mining is engineered in such a way that the
induced width – the primary indicator for the complexity of a coordination graph
– can be controlled without changing the number of agents.

In Gem Mining, a mining company mines gems from a set of mines (local
reward functions) located in the mountains (see Figure 1). The mine workers live
in villages at the foot of the mountains. The company has one van in each village
(agents) for transporting workers and must determine every morning to which
mine each van should go (actions), but vans can only travel to nearby mines
(graph connectivity). Workers are more efficient when there are more workers at
a mine: the probability of finding a gem in a mine is x · 1.03w−1, where x is the
base probability of finding a gem in a mine and w is the number of workers at
the mine. To generate an instance with v villages (agents), we randomly assign
1-5 workers to each village and connect it to a between y and z mines. Each
village is only connected to mines with a greater or equal index, i.e., if village i
is connected to m mines, it is connected to mines i to i+m− 1. The last village
is connected to z mines and thus the number of mines is v + z − 1.



Heuristic Coordination in Cooperative Multi-Agent Reinforcement Learning 9

village
mine

Fig. 1. Gem Mining example. Each village represents an agent, while the mines repre-
sent the local reward functions.

4.1 Gem Mining Problem

The Gem Mining problem is so constructed that the induced width is limited.
This induced width, is the number of neighboring agents (villages) at the time
the agent (village) is eliminated by the variable elimination (VE) algorithm
[Guestrin et al., 2002].

The induced width can be used as a measure of the complexity of the graph.
Due to the chain-like shape of the Gem Mining problem, the elimination order
for VE can always be chosen to be from left to right (or the reverse) with min-
imal resulting induced width. Specifically, as the left-most mine in the graph
always has a maximal number of neighbours z, and eliminating that agent does
not increase the the number of neighbours of the subsequent villages, the in-
duced width of a Gem Mining problem is always z. The Gem Mining problem is
therefore well-suited to show how algorithms behave when the graph complexity
increases.

4.2 Results

We run MATS using LS, RILS and VE as a subroutine on the same randomly
generated Gem Mining instances of 20 agents (villages), with varying induced
width, i.e., between 3 and 6. For each induced width level, we perform 20 runs.
For RILS, we use numOfTrials = 15, PP = 0.001, and PRandom = 0.0001, for
each experiment. All experiments were performed on a TOXIC-15CL872-1060
customised BTO laptop, with 16.0 GB ram and a processor intel core I7-8750H
of 2.20 GHz and 6 cores

For 1-3 villaged per mine, and a resulting induced width of 3, we observe in
Figure 2(a) that the cumulative regret of MATS while using LS as a subroutine
is significantly higher than that of MATS with VE or RILS. However, MATS
with LS uses only a fraction of the runtime (Figure 2(b)) of MATS with VE or
RILS. VE uses the most runtime, with RILS using about half the runtime of VE.
While MATS with VE and MATS with RILS (with 15 trials) reach about the



10 R. Petri et al.

(a) Regret vs, timesteps (b) Run run time in milliseconds VE,
HULSA and IHULSA

Fig. 2. Results when running MATS with a graph size of 20 villages and 1-3 mines per
village

same regret, MATS using RILS has a slightly higher variance in its regret than
when using VE. This is expected as RILS is a randomised heuristic algorithm.

As the induced with increased we observe interesting patterns in regret (Fig-
ures 3(a)–5(a)). Firstly, the regret of using LS gets closer to that of using VE and
RILS. This is probably because, as the number of neighbouring agents per agent
increases, there are possibilities for gradual improvements for an hill-climbing
algorithm like LS, i.e., it takes longer to run into a local optimum. Secondly,
the regret of using RILS seems to dive under the regret of using VE. This can
probably be explained by its reuse – even though the graph sampling of MATS
might lead to a new joint action, the joint action of the previous timestep, as
reused by RILS, may very well still be a local optimal. Therefore, while VE is
guaranteed to follow the exploration mechanism of MATS, RILS is not. While
this may lead to better in practice performance, this lack of exploration does
break the regret guarantees of MATS [Verstraeten et al., 2020]. For the intent
of this paper however, we are mainly interested in scalability and performance.

In terms of runtime (Figures 3(b)–5(b)), we observe a different pattern.
Firstly, the runtimes of LS and RILS do increase with the complexity of the
graphs. This can be explained from the observation that in some complex graphs
it also takes longer to find a local optimum (even though the quality of that local
optimum is likely to be higher). However, ultimately, as can be seen in Figure
5(b), for ever more complex graphs, VE has a much larger increase in runtime
than LS and RILS.

Another key observation in terms of runtime is that for low induced width
(Figure 2(b), LS has a much lower runtime than RILS. RILS uses 15 trials to
find new local optima, and its efficiency gain due to reuse is clearly not able to
compensate for the multiple trials yet. However, as the induced width increases,
and finding a local optimum from a completely random solution takes more time,
the runtime of MATS with LS overtakes the runtime of MATS with RILS, even
if RILS is using 15 trials instead of the 1 for LS. This indicated that reuse is
being effective; the reused initial joint action (i.e., the best joint action found



Heuristic Coordination in Cooperative Multi-Agent Reinforcement Learning 11

(a) Regret vs. timesteps (b) Runtime in milliseconds for
MATS in combination with VE, LS
and RILS

Fig. 3. Results when running MATS with a graph size of 20 villages and 2-4 mines per
village

(a) Regret vs. timesteps (b) Runtime in milliseconds for
MATS in combination with VE, LS
and RILS

Fig. 4. Results when running MATS with a graph size of 20 villages and a 3-5 mines
per village

(a) Regret vs, timesteps (b) Runtime in milliseconds for
MATS in combination with VE, LS
and RILS

Fig. 5. Results when running MATS with a graph size of 20 villages and 4-6 mines per
village



12 R. Petri et al.

for the previous timestep), is much closer to the ultimately selected joint action,
and therefore takes considerably less time to find.

We therefore conclude that even though MATS using RILS as a subroutine
does lose its theoretical regret bounds due to the heuristic nature of the RILS
algorithm, the in practice regret can be good, whilst scaling much better in the
complexity, i.e., induced width, of the graphs than VE, and even LS.

5 Related work

In this paper, we have proposed RILS – an approximate subroutine for optimising
the joint action in coordination graphs for multi-agent reinforcement learning in
a multi-agent multi-armed bandit (MOMAB) setting. For this setting we have
integrated RILS with MATS [Verstraeten et al., 2020], the state-of-the-art in
MOMABs. Other algorithms also apply to this setting however, and RILS can be
used in those algorithms as well. For example, sparse cooperative Q-learning [Kok
and Vlassis, 2004, Kok and Vlassis, 2006, Bargiacchi et al., 2018, Verstraeten
et al., 2020] can be used in this setting, and RILS can directly replace the
joint action selector subroutine there as well. Furthermore, RILS can also be
easily adapted for usage in multi-agent upper confidence exploration (MAUCE)
[Bargiacchi et al., 2018]. Specifically, as MAUCE keeps vector-valued rewards,
and uses an adapted variant of VE that scalarises these to determine which vector
is, RILS also should keep vector-valued rewards, and be aware of the value of the
whole joint action to determine whether the difference in vector-valued rewards
while running LS (Algorithm 1) are indeed improvements.

We note that other than local-search based algorithms. There are also other
classes of approximate algorithms that seem promising, such as, a.o., Max-plus
[Kok and Vlassis, 2005], AND/OR tree search methods [Marinescu and Dechter,
2005], variational methods [Liu and Ihler, 2013, Roijers et al., 2015a]. We note
though that these have not been adapted for the multi-agent RL in MOMABs,
and it would be interesting to investigate whether reuse schemes that exploit
information from the previous iteration work for those algorithms as well. There
may also be potential to use different initialisation schemes that leverage previous
observations from interaction with the environment as well. For example, one
may consider deep learning for coordination graphs [Böhmer et al., 2020], in
order to determine the initial solution before running local search.

Finally, we note that this work may be extended to use in factored or multi-
agent MDP settings [Boutilier, 1996]. In such settings, the coordination graph
would depend not only on the actions of the agents, but also on state variables,
that are provided by the environment. Therefore, multi-agent RL algorithms
for this setting (e.g., [Kok and Vlassis, 2004, Kok and Vlassis, 2006, Bargiacchi
et al., 2021]) are faced with different coordination graphs at every timestep, but
can still use subroutines like VE to find the joint actions. In this context, RILS
would have to be adapted, e.g., by finding the last joint action for the most similar
state previously observed. Initialisation using deep learning [Böhmer et al., 2020],
might be especially promising in this context.



Heuristic Coordination in Cooperative Multi-Agent Reinforcement Learning 13

6 Conclusion

In this paper, we proposed the heuristic reusing iterative local search (RILS)
algorithm, as an alternative to exact joint action finders for multi-agent co-
operative reinforcement learning in MOMABs, and specifically in combination
with the multi-agent Thompson sampling (MATS) [Verstraeten et al., 2020]
algorithm. RILS reuses the joint action found at the previous timestep to ini-
tialise its search for a new joint action. This is effective as, as the information
accrued through interaction with the environment accumulates, the new infor-
mation gained at each timestep impacts the learned reward structure (i.e., co-
ordination graph) for the next timestep less and less. This makes the graphs for
subsequent timesteps increasingly similar, and therefore the joint action of the
previous timestep increasingly likely to be a good initialisation. We have shown
experimentally that using RILS is able to closely match the regret for an exact
subroutine, while using significantly less runtime. Moreover, its runtime scales
better in the complexity of the graphs. We therefore believe RILS can be key
to keep multi-agent reinforcement learning in MOMABs scalable for complex
graphs.

In future work, we aim to investigate the combination of RILS with different
algorithms such as sparse cooperative Q-learning [Kok and Vlassis, 2006] and
MAUCE [Bargiacchi et al., 2018]. Furthermore, we aim to investigate larger,
and real-world inspired problems, such as wind farms [Verstraeten et al., 2021].
Finally, we aim to investigate how a reusing iterative local search scheme can
be applied in reinforcement learning in multi-agent Markov decision processes
(MMDPs) [Boutilier, 1996], and multi-objective multi-agent reinforcement learn-
ing settings [Rădulescu et al., 2020].

Acknowledgements

The authors would like to acknowledge FWO (Fonds Wetenschappelijk Onder-
zoek) for their support through the SB grant of Eugenio Bargiacchi (#1SA2820N).
This research was supported by funding from the Flemish Government under the
“Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme.
This project was supported by the KIEM project “Exploration towards an in-
telligent Scoliosis brace” that was funded by the Stichting Innovatie Alliantie in
the Netherlands.

References

[Bargiacchi et al., 2020] Bargiacchi, E., Roijers, D. M., and Nowé, A. (2020). AI-
Toolbox: A C++ library for reinforcement learning and planning (with python bind-
ings). Journal of Machine Learning Research, 21(102):1–12.

[Bargiacchi et al., 2018] Bargiacchi, E., Verstraeten, T., Roijers, D., Nowé, A., and
Hasselt, H. (2018). Learning to coordinate with coordination graphs in repeated
single-stage multi-agent decision problems. In International conference on machine
learning, pages 482–490. PMLR.



14 R. Petri et al.

[Bargiacchi et al., 2021] Bargiacchi, E., Verstraeten, T., and Roijers, D. M. (2021).
Cooperative prioritized sweeping. In Proceedings of the 20th International Conference
on Autonomous Agents and MultiAgent Systems, pages 160–168.

[Bertele and Brioschi, 1972] Bertele, U. and Brioschi, F. (1972). Nonserial dynamic
Programming. Academic Press, N.Y.

[Böhmer et al., 2020] Böhmer, W., Kurin, V., and Whiteson, S. (2020). Deep coor-
dination graphs. In International Conference on Machine Learning, pages 980–991.
PMLR.

[Boutilier, 1996] Boutilier, C. (1996). Planning, learning and coordination in multia-
gent decision processes. In TARK, volume 96, pages 195–210. Citeseer.

[Chalup et al., 2019] Chalup, S., Niemueller, T., Suthakorn, J., and Williams, M.-A.,
editors (2019). RoboCup 2019: Robot World Cup XXIII, Lecture Notes in Artificial
Intelligence, Berlin, Germany. Springer.

[Guestrin et al., 2002] Guestrin, C., Lagoudakis, M., and Parr, R. (2002). Coordinated
reinforcement learning. In ICML, volume 2, pages 227–234. Citeseer.

[Kok and Vlassis, 2004] Kok, J. R. and Vlassis, N. (2004). Sparse cooperative Q-
learning. In Proceedings of the twenty-first international conference on Machine
learning, page 61.

[Kok and Vlassis, 2005] Kok, J. R. and Vlassis, N. (2005). Using the max-plus algo-
rithm for multiagent decision making in coordination graphs. In Robot Soccer World
Cup, pages 1–12. Springer.

[Kok and Vlassis, 2006] Kok, J. R. and Vlassis, N. (2006). Collaborative multiagent
reinforcement learning by payoff propagation. Journal of Machine Learning Research,
7:1789–1828.

[Liu and Ihler, 2013] Liu, Q. and Ihler, A. (2013). Variational algorithms for marginal
MAP. The Journal of Machine Learning Research, 14(1):3165–3200.

[Lourenço et al., 2003] Lourenço, H. R., Martin, O. C., and Stützle, T. (2003). Iterated
local search. In Handbook of metaheuristics, pages 320–353. Springer.

[Marinescu and Dechter, 2005] Marinescu, R. and Dechter, R. (2005). AND/OR
branch-and-bound for graphical models. In IJCAI, pages 224–229.

[Rădulescu et al., 2020] Rădulescu, R., Mannion, P., Roijers, D. M., and Nowé, A.
(2020). Multi-objective multi-agent decision making: a utility-based analysis and
survey. Autonomous Agents and Multi-Agent Systems, 34(1):1–52.

[Roijers, 2016] Roijers, D. M. (2016). Multi-Objective Decision-Theoretic Planning.
PhD thesis, University of Amsterdam.

[Roijers et al., 2015a] Roijers, D. M., Whiteson, S., Ihler, A., and Oliehoek, F. A.
(2015a). Variational multi-objective coordination. In NIPS Workshop on Learning,
Inference and Control of Multi-Agent Systems.

[Roijers et al., 2015b] Roijers, D. M., Whiteson, S., and Oliehoek, F. A. (2015b). Com-
puting convex coverage sets for faster multi-objective coordination. Journal of Arti-
ficial Intelligence Research, 52:399–443.

[Rosenthal, 1977] Rosenthal, A. (1977). Nonserial dynamic programming is optimal.
In Proceedings of the ninth annual ACM symposium on Theory of computing, pages
98–105.

[Russell and Norvig, 2005] Russell, S. and Norvig, P. (2005). AI a modern approach.
Learning, 2(3):4.

[Scharpff et al., 2016] Scharpff, J., Roijers, D., Oliehoek, F., Spaan, M., and de Weerdt,
M. (2016). Solving transition-independent multi-agent mdps with sparse interactions.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30.



Heuristic Coordination in Cooperative Multi-Agent Reinforcement Learning 15

[Scharpff, 2020] Scharpff, J. C. D. (2020). Collective Decision Making through Self-
regulation: Mechanisms and Algorithms for Self-regulation in Decision-Theoretic
Planning. PhD thesis, Delft University of Technology.

[Verstraeten, 2021] Verstraeten, T. (2021). A Multi-Agent Reinforcement Learning Ap-
proach to Wind Farm Control. PhD thesis, Vrije Universiteit Brussel.

[Verstraeten et al., 2020] Verstraeten, T., Bargiacchi, E., Libin, P. J., Helsen, J., Roi-
jers, D. M., and Nowé, A. (2020). Multi-agent Thompson sampling for bandit appli-
cations with sparse neighbourhood structures. Scientific reports, 10(1):1–13.

[Verstraeten et al., 2021] Verstraeten, T., Daems, P.-J., Bargiacchi, E., Roijers, D. M.,
Libin, P. J., and Helsen, J. (2021). Scalable optimization for wind farm control
using coordination graphs. In Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, pages 1362–1370.

[Visser et al., 2014] Visser, A., Ito, N., and Kleiner, A. (2014). Robocup rescue simu-
lation innovation strategy. In Robot Soccer World Cup, pages 661–672. Springer.


