
Transfer Reinforcement Learning across
Environment Dynamics with Multiple Advisors

Hélène Plisnier1, Denis Steckelmacher1, Diederik M. Roijers1, and Ann Nowé1

Vrije Universiteit Brussel, 1050 Brussels, Belgium
helene.plisnier@vub.be

Abstract. Sample-efficiency is crucial in reinforcement learning tasks,
especially when a large number of similar yet distinct tasks have to be
learned. For example, consider a smart wheelchair learning to exit many
differently-furnished offices on a building floor. Sequentially learning each
of these tasks from scratch would be highly inefficient. A step towards a
satisfying solution is the use of transfer learning: exploiting the knowl-
edge acquired in previous (or source) tasks to tackle new (or target)
tasks. Existing work mainly focuses on exploiting only one source policy
as an advisor for the fresh agent, even when there are several expert
source policies available. However, using only one advisor requires arti-
ficial mechanisms to limit its influence in areas where the source task
and the target task differ, in order for the advisee not to be misled. In
this paper, we present a novel approach to transfer learning in which
all available source policies are exploited to help learn several related
new tasks. Moreover, our approach is compatible with tasks that differ
by their transition functions, which is rarely considered in the trans-
fer reinforcement learning literature. Our in-depth empirical evaluation
demonstrates that our approach significantly improves sample-efficiency.

Keywords: Reinforcement Learning · Transfer Learning · Policy Shap-
ing.

1 Introduction

One of the main goals pursued by reinforcement learning algorithms is high
sample-efficiency. Especially on physical robots or slow simulators, an algorithm
that requires too many interactions with the environment before learning a good
policy can be impossible to apply. In this paper, we consider a setting where
the agent needs to learn a large amount of similar yet distinct tasks. A simple
example of this setting is a motorized wheelchair that has to learn how to go to
any of the 22 offices (and a toilet) on a floor. A much more challenging example,
on which we focus on this paper, is the wheelchair learning how to exit any
of these offices from any location inside them. Offices have different shapes and
furnishing, which makes them share a state representation, but distinct transition

Copyright 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 H. Plisnier et al.

dynamics. In this paper, we propose a method to reuse the knowledge acquired
from learning several past tasks to tackle a new task, having the same state-space
and action space but different dynamics and reward functions.

Transfer learning (Taylor and Stone, 2009) has the potential to make RL
agents much faster at mastering new tasks (also called target tasks), by allowing
the reuse of knowledge acquired in previous tasks (also called source tasks). An
important challenge of transfer learning for an RL agent launched in a target
task, is to determine which parts are shared by both the target task and the
source task, and which parts differ. This information is critical; indeed one cannot
just blindly follow the policy learned in the source task while tackling the target
task, because a behavior that worked well in the past might not apply anymore.
Therefore, it is necessary for a transfer learning algorithm to be capable of
following the past policy only when suitable, and to otherwise diverge from it.
To mitigate this problem, current techniques either artificially set a probability
of following the advisor, hence limiting the potential damage of irrelevant advice
(Fernández and Veloso, 2006); or let the agent learn when to follow advice (Taylor
and Stone, 2007; Taylor et al., 2007; Parisotto et al., 2015). If several expert
policies are available, then isolating one of them and only exploiting that one
policy often becomes the focus, instead of exploiting a combination of them
(Taylor and Stone, 2007; Fernández and Veloso, 2006). Hence, existing methods
tend to add an extra learning problem, by either learning when to follow the
advisor, or which advisor to follow.

In this paper, we consider the case where a large amount of similar, yet
distinct tasks must be learned. Each of these tasks differs in its environment dy-
namics, and achieving success highly depends on learning these environment dy-
namics dissimilarities. We have at our disposal a number of expert source policies
learned in the same environment, which we call advisors. Our main contribution,
inspired by the Actor-Advisor (Plisnier et al., 2019), is a transfer learning ap-
proach combining all of the available expert source policies into one advisor. This
advisor is confident in areas where the source tasks are similar, meaning that
the advice probably applies in the target task as well, and is uncertain where the
source tasks differ. The latter case allows the fresh agent to learn for itself what is
best to do in situations unknown to its advisor. We implement our transfer learn-
ing method within Bootstrapped Dual Policy Iteration (BDPI) (Steckelmacher
et al., 2019), an already extremely sample-efficient model-free actor-critic rein-
forcement learning algorithm, and we empirically show that, combined with our
contribution, BDPI can achieve an even higher sample-efficiency.

2 Related Work in Transfer Learning

Reusing previously learned policies or skills to learn a new task is an intuitive
approach to improving sample-efficiency (Taylor and Stone, 2009). Here, we con-
sider that the knowledge to be transferred is represented by the policy πsource
learned by a reinforcement learner in the source task (Brys, 2016, p. 34). Trans-
ferring only isolated parts of behavior (Andre and Russell, 2002; Ravindran and

Transfer RL across Environment Dynamics with Multiple Advisors 3

Barto, 2003; Konidaris and Barto, 2007), such as skills or options (Sutton et al.,
1999) is left out of the scope of this related work section.

Our method falls in the realm of transfer learning via exploration alteration
(Garćıa and Fernández, 2015). A straightforward way of transferring a policy
πsource is to leverage it in the agent’s exploration strategy, letting it bias or
determine the agent’s actions at action selection time (Fernández and Veloso,
2006; Taylor and Stone, 2007; Plisnier et al., 2019). Such artificially altered
exploration generally requires to be used with a value-based method, as the agent
must be able to learn from off-policy experiences (except for Plisnier et al. (2019),
which learns with Policy Gradient). In Fernández and Veloso (2006), 5 different
πsources, each learned in the same office-like gridworld but with a different goal
location, are reused to learn a task with a new goal location. As the 5 πsources are
not all good advisors, the authors propose a method that allows the agent to learn
which πsource is more relevant to the target task. However, they only consider
dissimilarities in the reward function (by changing the goal location), and not
in the environment dynamics. Taylor and Stone (2007) transfers rules learned
in a discrete state-space environment to a continuous state-space environment.
Similarly to Fernández and Veloso (2006), even though they learn several πsource
in different source tasks, they end up only reusing one πsource at a time (the
one that is the most relevant to the target task), instead of a combination of
all πsources. The Actor-Advisor (Plisnier et al., 2019) mixes πsource with the
Policy Gradient actor’s policy at action selection time, using the policy mixing
formula in Griffith et al. (2013) (in Section 3.3). This way, the learning process
is influenced by πsource, while πsource also guides the agent’s exploration. In the
transfer task in Plisnier et al. (2019), the doors of a maze are shifted, resulting
in a change in the dynamics of the environment. We use a larger version of this
environment in our experiments, and use a combination of multiple πsource as
advisor.

Another approach to transfer is to either initialize the agent’s policy with
πsource (Taylor et al., 2007; Parisotto et al., 2015), and/or to make the agent
actively learn to imitate πsource (Brys et al., 2015; Mohammedalamen et al.,
2019). Multitasking is an RL subdomain close to transfer learning, which aims at
generating one policy able to perform multiple distinct tasks. Several techniques
exist to achieve this goal. The Actor-Mimic (Parisotto et al., 2015) uses several
DQN policies (each expert in a different source task) to train a single multi-task
student network, by minimizing the cross-entropy loss between the student and
experts’ policies. Transfer can then be done by initializing yet another DQN
network with the resulting multi-task expert policy. Although our contribution
reuses multiple πsource, it is distinct from multitasking in that it is not trying
to generate one good policy able to perform several tasks, but to improve the
sample-efficiency of a fresh agent learning one new task.

4 H. Plisnier et al.

3 Background

In this section, we introduce the concepts at the basis of our work: Markov
Decision Processes, Bootstrapped Dual Policy Iteration (BDPI), Policy Shaping
and the Actor-Advisor.

3.1 Markov Decision Processes

A discrete-time Markov Decision Process (MDP) Bellman (1957) with discrete
actions is defined by the tuple 〈S,A,R, T 〉: a possibly-infinite set S of states; a
finite set A of actions; a reward function R(st, at, st+1) ∈ R returning a scalar re-
ward rt for each state transition; and a transition function T (st+1|st, at) ∈ [0, 1]
taking as input a state-action pair (st, at) and returning a probability distribu-
tion over new states st+1.

A stochastic stationary policy π(at|st) ∈ [0, 1] maps each state to a proba-
bility distribution over actions. At each time-step, the agent observes st, selects
at ∼ π(st), then observes rt+1 and st+1. The (st, at, rt+1, st+1) tuple is called
an experience tuple. An optimal policy π∗ maximizes the expected cumulative
discounted reward Eπ∗ [

∑
t γ

trt], where γ is a discount factor. The goal of the
agent is to find π∗ based on its experiences within the environment.

3.2 Bootstrapped Dual Policy Iteration

Bootstrapped Dual Policy Iteration (Steckelmacher et al., 2019, BDPI) is an
actor-critic method, with one actor and Nc > 1 critics. The critics are trained
using Aggressive Bootstrapped Clipped DQN (Steckelmacher et al., 2019), a
version of Clipped DQN Fujimoto et al. (2018) that performs Nt > 1 training
iterations per training epoch. Each critic maintains two Q-functions, QA and
QB . Each training epoch, a batch bi is sampled for each critic i ∈ [1, Nc] from
an experience buffer B. Then, for each training iteration, every critic i swaps its
QA and QB functions, then QA is trained using Equation 1 on bi.

Qk+1(st, at) = Qk(st, at) + α (rt+1 + γ V (st+1)) (1)

−Qk(st, at)

V (st+1)) = min
l=A,B

Ql(st+1, argmax
a′

QA(st+1, a
′))

The actor π is trained using a variant of Conservative Policy Iteration (Pirotta
et al., 2013). Every training epoch, after the critics have been updated for a num-
ber Nt of times, the actor is trained towards the greedy policy of all its critics.
This is achieved by sequentially applying Equation 2 Nc times, each iteration
updating the actor based on a different critic.

π(s)← (1− λ)π(s) + λΓ (QA,ik+1(s, ·)) ∀s ∈ bi (2)

Transfer RL across Environment Dynamics with Multiple Advisors 5

where λ = 0.05. A great asset of BDPI over other state-of-the-art actor-critic
methods is its high sample-efficiency, due to the aggressiveness of its off-policy
critics.

3.3 Policy Shaping and the Actor-Advisor

Policy Shaping (Kartoun et al., 2010; Griffith et al., 2013; MacGlashan et al.,
2017; Harrison et al., 2018) generally aims at letting an external advisory policy
πsource (we call it πsource since, in our case, it is learned in the source task) alter
or determine the agent’s behavior. The specific Policy Shaping formula we are
considering in this paper is the one suggested by Griffith et al. (2013):

at ∼
π(st)πsource(st)

π(st) · πsource(st)︸ ︷︷ ︸∑
a∈A π(a|st)πsource(a|st)

(3)

where π(st) is the state-dependent policy learned by the agent, πsource(st) is the
state-dependent advice, and π(st) · πsource(st) is the dot product. The actions
executed by the agent in the environment are sampled from a mixture of the
agent’s current learned policy π and an external advisory policy πsource. Exe-
cuting actions from this mixture allows the advisor πsource to guide the agent’s
exploration and potentially improves its performance. This method not only
allows the actor to benefit from the advisor’s expertise; it also lets the actor
eventually outperform its advisor. This way, the actor’s performance is never
bounded by its advisor’s, and the advisor does not need to have a complete
knowledge of the task to be solved.

The Actor-Advisor (Plisnier et al., 2019) is the first attempt made at using
the policy mixing formula in Equation 3 to achieve transfer learning. Their main
contribution is to directly influence a Policy Gradient agent’s policy with some
off-policy external advice πsource, without convergence issue. In the next section,
we detail our contribution, which is in part an extension of BDPI inspired by
the Actor-Advisor.

4 BDPI with Multiple Advisors

In this section, we introduce our contributions. The first one is an extension of
the Bootstrapped Dual Policy Iteration (Steckelmacher et al., 2019) that allows
advice to be given to the agent. The Actor-Advisor (Plisnier et al., 2019) having
been originally designed for Policy Gradient algorithms, its application to an
actor-critic algorithm that does not use Policy Gradient is far from trivial. Our
second contribution is a training method that consists of training an agent on
N tasks, then using these N actors to advise the N + 1th agent, then using the
N + 1 agents to advise the N + 2th, and so on.

6 H. Plisnier et al.

4.1 Bootstrapped Dual Policy Iteration with Advice

In their original work, Plisnier et al. (2019) propose a Policy Gradient actor
π(a|s, πE) that takes external advice πE as input, in addition to a state. The
actor, implemented as a neural network, computes a learned candidate policy
πL that is combined with πE at the very end of the network, using the policy
mixing formula of Griffith et al. (2013). This integration of the advice within
the neural network allows the behavior of the agent to be influenced by external
advice without convergence issues, despite Policy Gradient being a strong on-
policy algorithm. Moreover, because support for advice is built directly into the
neural network, the presence of advice influence both acting and learning. When
extending BDPI with advice in a similar fashion as the Actor-Advisor, we must
therefore define how its actor learns and acts, and how its critics learn.

Acting When acting, we consider that the actor of BDPI is πL(a|s), the learned
actor. This actor does not observe any advice, and only produces the usual state-
conditioned probability distribution over actions. We propose to introduce advice
to the agent by simply using the formula introduced by Griffith et al. (2013):

π(a|s, πE) =
πL(a|s)πE(a|s)∑′
a π

L(a′|s)πE(a′|s)
(4)

with πE(a|s) a normalized probability vector that encodes the advice given to
the agent in state s. The agent directly observes πE(a|s) values, and has no direct
knowledge of πE . The advice vector received by the agent at each time-step is
part of the experience, which leads to the agent storing (st, at, rt, st+1, π

E(·|st))
tuples in its experience buffer.

Training the actor As demonstrated in Steckelmacher et al. (2019), BDPI
is an off-policy algorithm. The demonstration consists of forcing 20% of the
actions being executed in the environment to be random, and showing that this
does not impair learning speed. With advice, the situation is slightly different.
Since BDPI is off-policy, in contrast to the Actor-Advisor, we theoretically do
not need to incorporate the advice in the actor’s learning rule. Indeed, a BDPI
agent is perfectly able to learn optimal policies by using advice solely at acting
time. However, it is believed by the authors of Plisnier et al. (2019) that, in
the Actor-Advisor, the integration of the advice in the Policy Gradient’s loss
not only allows for Policy Gradient to learn without diverging, but also leads
to an implicit learning correction, which contributes to the agent’s performance.
As BDPI does not have a loss similar to the Policy Gradient’s one, we must
explicitly define a similar learning correction in the actor’s learning rule. Our
correction consists of observing that the BDPI critics produce greedy policies
Γ (Q) that converge to the optimal policy for the task. This means that the
policy as executed by the agent, that mixes the actor and the advisor, must
pursue Γ (Q):

Transfer RL across Environment Dynamics with Multiple Advisors 7

π(s, πE(s))← Γ (Q(s)) converges to optimal policy (5)

Starting from Equation 5, we isolate πL, the actor of BDPI:

π(s, πE(s))← Γ (Q(s))

πL(s)πE(s)

|πL(s) · πE(s)|
← Γ (Q(s))

πL(s)πE(s)← Γ (Q(s))×

a scalar︷ ︸︸ ︷
|πL(s) · πE(s)|︸ ︷︷ ︸

a vector

πL(s)← Γ (Q(s))× |πL(s) · πE(s)|
πE(s) + ε

(6)

with the fraction an element-wise division between two vectors, and ε a small
positive value that prevents a division by zero if the advice contains any zero.

Intuitively, Equation 6, the actor learning rule that we use instead of the
standard BDPI one, moves the actor in the direction of the greedy function
of a critic, as described by Steckelmacher et al. (2019), with the addition of a
weight that influences how much the greedy function is followed. The learning
correction works as follows: the more the advice differs from the actor, the more
the actor will follow the greedy function (and thus pull away from the advice).
Such a pull allows the agent to compensate for bad advice, by learning an actor
πL that, when combined with the faulty advice, still leads to a good policy. The
observation that the actor tries to differ from the advisor, that we explain in this
paper, has also been made by Plisnier et al. (2019), when they discuss that the
policy gradient forces the policy to move away from the advisor. In Plisnier et al.
(2019), no explanation or justification for this pull-away behavior was given.

Training the critics The critics of BDPI being updated with a variant of (off-
policy) Q-Learning, the fact that the behavior of the agent is altered by advice
does not change any of the update rules. The greedy policies of the critics will
automatically converge to the optimal policy for the task.

4.2 Receiving Advice from Many Advisors

An important challenge in transfer reinforcement learning is discovering when
to follow the advisor (trained on the source task), and when to ignore it. Ideally,
the advisor should be followed only in the states for which its policy is optimal in
the target task. Unfortunately, knowing whether the advisory policy is optimal
in a state is impossible until the agent has fully learned the target task.

Previous work learns in which states to use the advisor, or which advisor
to use in which state (Fernández and Veloso, 2006; Taylor and Stone, 2007), or

8 H. Plisnier et al.

relies on the uncertainty or entropy of the advisor to decide how much to follow
it (Plisnier et al., 2019). The observation is that when the advisor is certain of
what has to be done, it is probably right. We provide a counter-example for
this statement: in our environment (see Section 5), passing through a (thin)
door requires careful moves, leading to a policy of very low entropy in states
near doors. However, if the source task and target task have doors at different
locations, the advisor will very confidently make the agent bang against a wall,
where it thinks a door is.

We argue that it is initially impossible to evaluate when to follow advice,
and when to ignore it, based solely on the advice received from a single advisor.
Building on our hypothesis that evaluating a single advisor in a sample-efficient
way is impossible, we instead propose to use several advisors, and combine them
in the following way:

πE(s) =
1

N

∑
i

(
πEi (s) + 1− ρ

)
(7)

with N the number of advisors, and ρ ≤ 1 the weight of the advisor’s influence,
that does nothing when set to 1, and artificially increases the entropy of the
advisors when set to a value smaller than 1. Equation 7 is a simple average of
the advice given by all the advisors. Intuitively, if N is large enough (typically 5
to 10), the advisors will tend to agree in states in which the tasks being learned
share a common structure, and disagree in states where the tasks differ. Even if
every single advisor is highly confident in these differing states, the average will
produce a probability distribution of high entropy. Moreover, the advisors may
agree that a few actions are bad in a given state, while not agreeing on which
ones are good. In our example of leaving a room, moving towards the window is
always bad, regardless of the room, while moving towards the door will be more
strongly advised.

Building on Equation 7, we propose the following training method for multi-
ple tasks that share a common structure but different dynamics: train N actors
on N tasks from scratch, with N between 5 and 10 depending on the complexity
of the tasks. Then, combine the N actors in a single advisor, using Equation 7,
and use it to significantly improve the sample-efficiency and safety of the N+1th

actor. Then, add the N + 1th actor to the pool of actors used to produce advice,
and repeat for N+2, Our experimental results, that we now present, validate
our approach and show that, as more advisors are available, the sample-efficiency
of the agent increases on new tasks.

5 Experiments

We now evaluate our Advised BDPI algorithm in a representative environment
for which 676 tasks have to be learned. We demonstrate that learning a small
amount of tasks from scratch (even as low as 4) allows the next tasks to be
solved significantly faster. Moreover, the more tasks have been learned, the more

Transfer RL across Environment Dynamics with Multiple Advisors 9

Fig. 1: The 29 × 28 Five Rooms environment used in our experiments. ’S’ denotes the
starting cell, ’G’ the goal cell. a) The original door configuration. The first and last
doors (in green) are the ones that are allowed to move; b) an example of an alternative
configuration of the doors; c) all the potential door locations. For each of the two
doors, there are 26 such locations, which results in 26×26 = 676 different environment
configurations.

sample-efficient the agent becomes on new tasks. Combined with the already
high sample-efficiency of BDPI, this demonstrates that reinforcement-learning
can now be used to train full multi-task systems.

5.1 Environment

We evaluate our method on the Five Rooms environment (see Figure 1 intro-
duced in Plisnier et al. (2019)). Five Rooms is a 29 cells high and 28 cells wide
grid world, divided by walls into five rooms. Each of the rooms is accessible via
one of the four one-cell-wide doors. The agent can move one cell up, down, left
or right, unless the target cell is a wall (then the agent does not move). The
agent must get to the goal cell, always located at the bottom right corner of
the bottom room, starting from the top-left corner of the top room. Hence, in
order to reach the goal, the agent imperatively has to go through at least two
doors (the ones in green on Figure 1, a.). Reaching the goal results in a +100
reward, the agent otherwise receives −1 per time-step. The episode terminates
either once the goal is reached, or after 500 unfruitful time-steps.

In our experiments, we vary the location of the doors on the two horizon-
tal walls (see Figure 1). Each door can be located in any of 26 cells. Every
combination allows the goal to be reached from the initial position, but some
combinations lead to shorter or longer optimal paths (see, in Figure 2, the differ-
ence between the paths in examples a and g). Because we do not move the goal,
and do not alter the reward function, but only vary the location of the doors
across task, our environment isolates the impact of a varying transition function.
Moving doors inside the environment is also a simple but relevant illustration
of our example task: learn to get out of many rooms, each room differing by its
furniture. Finally, moving a door is a localized change to the environment, but
is still very challenging: directly applying a policy learned in a source configu-
ration in a target configuration would lead the agent to get stuck against a wall

10 H. Plisnier et al.

in the target environment (where there is a door in the source environment).
The source policy, strongly used to see a door where it is not there anymore,
would be highly confident in its bad action and mislead the fresh agent. We now
describe our experimental setup, and show that our Advised BDPI successfully
tackles this challenge.

5.2 Experimental Settings

We evaluate our Advised BDPI on the tasks described above. BDPI has been
configured closely to what is recommended in Steckelmacher et al. (2019): 8
critics, all trained every time-step for 4 Clipped DQN iterations. The current
state (the current cell in which the agent is) is one-hot encoded into a vector of
812 floats. The BDPI actor and critics are neural networks with a single hidden
layer of 256 neurons, with the tanh activation function, and one output per
action. Actor and critic networks are trained with the Adam optimizer, with
a learning rate of 0.0001, for 10 gradient steps per Clipped DQN iteration. In
order to produce our results, we trained many agent in this order:

1. 100 agents have been trained from scratch, each on a different random door
configuration (from 676). This produces a pool of advisors.

2. The curves of Figure 3 have been produced by training around 20 agents
(per curve), each on a randomly-selected configuration of doors, and using
50 of the advisors produced at step 1 for advice.

3. The curves of Figure 5 have been produced the same way as in step 2, but by
using either more (100) or less (4 or 1) advisors for advice. Our experiments
with N = 100, 50, 4 or 1 advisors measure the sample-efficiency gains that
are obtained when training the N + 1th agent using N advisors.

4. The curves of Figure 9 have been produced the same way as in step 2 and
3, but means to illustrate the effect of implementing the learning correction
(see Section 4). They are both advised by 100 advisors, and averaged over
around 10 runs each.

5. For steps 2, 3 and 4, we vary the ρ parameter of Equation 7, to evaluate the
impact of artificially increasing the entropy of the advisors. We generally
show that artificially increasing the entropy of the advisors is not needed to
obtain good results, which demonstrates the benefits of averaging advisors,
and removes one tunable parameter from our algorithm.

Because each configuration of doors has an optimal policy that achieves a
different return (as illustrated in Figure 2), we evaluate each agent on a large
amount of runs, to average out the effect of the door positions. This allows us
to produce curves with high confidence.

5.3 Results

Figure 3 shows that using advice generally improves performance, especially at
the beginning of learning. In addition, it can be noticed that a high ρ (i.e., ρ = 1)

Transfer RL across Environment Dynamics with Multiple Advisors 11

helps in the beginning of learning, but tends to prevent the agent from achieving
the best performance towards the end. A lower ρ (i.e., ρ = 0.7), on the other
hand, provides more freedom to the agent to reach that high performance at the
end, but at the cost of lower performance in early learning stages.

We also evaluate the impact of either having a large amount of advisors
(100, in our case) or only a few (4 or 1), while varying the advisors’ weight ρ
(0.8 or 1, see Figure 5). When ρ = 0.8 (see Figure 4a), i.e., the influence of
the advisors is somewhat moderate, having a few or a large amount does not
seem to matter in the long run. However, when the influence of the advisors is
maximum (i.e., ρ = 1.0, in Figure 4b), then increasing the amount of advisors
increases sample-efficiency. Averaging over a large number of advisors naturally
exhibits uncertainty in areas where the target task and the source tasks might
differ, allowing the agent to be less dependent on the ρ parameter. Even having
only 4 advisors instead of 1 dramatically improves performance.

We compared leveraging several advisors to leveraging only one carefully
selected advisor. This advisor is selected based on its doors configuration; the
location of the doors in its source task is the closest to the location of the doors
in the target task. Hence, as suggested by Fernández and Veloso (2006), out of
all advisors from the pool, this advisor should be the most suited to provide
quality advice to the fresh agent. However, even though there is a significant
improvement between Figure 5 (i.e., a randomly selected advisor) and Figure 7
(i.e., the best advisor), averaging over 4 randomly chosen advisors can still pro-
vide better results in the long run, in both cases where ρ = 0.8 and ρ = 1.0.
Moreover, having only one advisor, albeit the best, still makes the fresh agent
rely on a low value of ρ.

Finally, we assess the influence of the learning correction (see Section 4)
on learning while being advised (see Figure 9). When we do not artificially
increase the entropy of the advisors (i.e., when ρ = 1), learning the task while
being advised is harder without the learning correction. The importance of the
learning correction is lesser when ρ < 1, though. In contrast, the performance
of the agents with the learning correction is similar in both settings of ρ (0.8
or 1), which demonstrates that our learning correction positively impacts the
robustness of the agent.

6 Conclusion

In this paper, we present a transfer learning method exploiting multiple advi-
sors to tackle new tasks. The source tasks and the target tasks take place in the
same state-space, but present crucial differences in their environment dynamics.
Our motivation example is a smart wheelchair having to exit several different
offices. Even though it is likely that all offices of a building floor share a common
layout, these offices might also be furnished differently, which makes navigation
a unique experience in each of them for a reinforcement learner. We contribute
a transfer learning method consisting in averaging the advice coming from mul-
tiple advisors, and providing this averaged advice to the fresh agent tackling a

12 H. Plisnier et al.

i)
S

G

c)
S

G

S

G

b)

S

G

d)

S

G

a)

e)
S

G

f)
S

G

S

G

g)
S

G

h)

Fig. 2: These 9 examples of configurations show how the difficulty of the task (i.e.,
reaching the goal from the initial cell) can strongly vary from configuration to config-
uration. The path from the initial cell to the goal cell is much longer and convoluted
in configuration g) than in configuration a), for instance.

0 25 50 75 100 125 150 175 200
Reward

500

400

300

200

100

0

Ep
iso

de
s

advised-1.0
advised-0.8
advised-0.7
no advice

Fig. 3: Comparison between learning the task while using advice from 50 advisors (with
ρ = 1.0, 0.8 or 0.7) and learning the task without advice. These curves are averaged
over multiple runs: around 25 runs for the “advised” curves, and 100 runs for the “no
advice” curve. A high ρ greatly helps the agent at the beginning of learning but slightly
decreases performance in the long run, while a lower ρ allows the agent to reach a better
policy at the end of learning, but provides a weaker jumpstart.

Transfer RL across Environment Dynamics with Multiple Advisors 13

0 25 50 75 100 125 150 175 200
Reward

500

400

300

200

100

0
Ep

iso
de

s

100 advisors
4 advisors
1 advisor

ρ = 0.8

0 25 50 75 100 125 150 175 200
Reward

500

400

300

200

100

0

Ep
iso

de
s

100 advisors
4 advisors
1 advisor

ρ = 1.0

Fig. 5: Comparison between learning the task while advised by either 100 advisors, 4
advisors or only 1 advisor. When having a large amount of advisors to exploit, the
performance of our method seems to remain stable, whether ρ = 1.0 or ρ = 0.8.
Being advised by only one advisor, on the other hand, makes the agent rely more on
a low ρ (i.e., artificially increasing the entropy of the advisors) to not get stuck with a
suboptimal policy.

target task. This approach naturally balances advice versus tabula-rasa learn-
ing, depending on where the tasks are similar or not. We perform a thorough
empirical evaluation of our method by: i) assessing the increase in performance
gained thanks to the use of advice compared to none; ii) evaluating the benefit
of having multiple advisors to average over instead of only one; iii) assessing the
importance of implementing our learning correction to ensure stable learning.
We saw that our contribution allows BDPI, an already highly sample-efficient
algorithm, to be even more sample-efficient in a multi-task setting. This opens
multi-task reinforcement-learning to areas, such as robotics, where many tasks
have to be learned quickly.

Acknowledgments

The first and second authors are funded by the Science Foundation of Flanders
(FWO, Belgium), respectively as 1SA6619N Applied Researcher, and 1129319N
Aspirant.

14 H. Plisnier et al.

0 25 50 75 100 125 150 175 200
Reward

500

400

300

200

100

0

Ep
iso

de
s

100 advisors
4 advisors
1 best advisor

ρ = 0.8

0 25 50 75 100 125 150 175 200
Reward

500

400

300

200

100

0

Ep
iso

de
s

100 advisors
4 advisors
1 best advisor

ρ = 1.0

Fig. 7: Comparison between learning the task while advised by either 100 advisors, 4
advisors or the best advisor for the target task. The “best advisor” is the advisor which
source task has the most similar doors configuration to that of the target task. Even
though one carefully chosen advisor gives better advice than a randomly chosen one,
the performance it can achieve in the long run is still below that of 4 randomly chosen
advisors, whether ρ = 0.8 or ρ = 1.0. Additionally, being advised by only advisor,
albeit the most suited one for the target task, still leads to an agent highly dependent
on ρ.

0 25 50 75 100 125 150 175 200
Reward

500

400

300

200

100

0

Ep
iso

de
s

with correction
without correction

ρ = 0.8

0 25 50 75 100 125 150 175 200
Reward

500

400

300

200

100

0

Ep
iso

de
s

with correction
without correction

ρ = 1.0

Fig. 9: In both plots, the two curves are averages over around 20 runs of agents ad-
vised by 100 advisors. We compare between using advice with the learning correction
and without the learning correction. The learning correction ensures a more stable
performance regardless of whether ρ = 0.8 or 1.0 than when it is not implemented.

Bibliography

Andre, D. and Russell, S. J. (2002). State abstraction for programmable rein-
forcement learning agents. In AAAI/IAAI, pages 119–125.

Bellman, R. (1957). A Markovian decision process. Journal Of Mathematics
And Mechanics.

Brys, T. (2016). Reinforcement Learning with Heuristic Information. PhD thesis,
PhD thesis, Vrije Universitet Brussel.

Brys, T., Harutyunyan, A., Taylor, M. E., and Nowé, A. (2015). Policy transfer
using reward shaping. In Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems, pages 181–188. International
Foundation for Autonomous Agents and Multiagent Systems.

Fernández, F. and Veloso, M. M. (2006). Probabilistic policy reuse in a rein-
forcement learning agent. In International Conference on Autonomous Agents
and Multiagent Systems.

Fujimoto, S., van Hoof, H., and Meger, D. (2018). Addressing function approxi-
mation error in actor-critic methods. In International Conference on Machine
Learning.

Garćıa, J. and Fernández, F. (2015). A comprehensive survey on safe reinforce-
ment learning. Journal of Machine Learning Research.

Griffith, S., Subramanian, K., Scholz, J., Isbell, C. L., and Thomaz, A. L. (2013).
Policy shaping: Integrating human feedback with reinforcement learning. In
Neural Information Processing Systems.

Harrison, B., Ehsan, U., and Riedl, M. O. (2018). Guiding reinforcement learning
exploration using natural language. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, pages 1956–1958.
International Foundation for Autonomous Agents and Multiagent Systems.

Kartoun, U., Stern, H., and Edan, Y. (2010). A human-robot collaborative
reinforcement learning algorithm. Journal of Intelligent & Robotic Systems,
60(2):217–239.

Konidaris, G. and Barto, A. G. (2007). Building portable options: Skill transfer
in reinforcement learning. In IJCAI, volume 7, pages 895–900.

MacGlashan, J., Ho, M. K., Loftin, R., Peng, B., Wang, G., Roberts, D. L.,
Taylor, M. E., and Littman, M. L. (2017). Interactive learning from policy-
dependent human feedback. In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, pages 2285–2294. JMLR. org.

Mohammedalamen, M., Khamies, W. D., and Rosman, B. (2019). Transfer
Learning for Prosthetics Using Imitation Learning. arXiv e-prints, page
arXiv:1901.04772.

Parisotto, E., Ba, J. L., and Salakhutdinov, R. (2015). Actor-mimic: Deep mul-
titask and transfer reinforcement learning. arXiv preprint arXiv:1511.06342.

Pirotta, M., Restelli, M., Pecorino, A., and Calandriello, D. (2013). Safe policy
iteration. In International Conference on Machine Learning, pages 307–315.

16 H. Plisnier et al.

Plisnier, H., Steckelmacher, D., Roijers, D. M., and Nowé, A. (2019). The
Actor-Advisor: Policy Gradient With Off-Policy Advice. arXiv e-prints, page
arXiv:1902.02556.

Ravindran, B. and Barto, A. G. (2003). Relativized options: Choosing the right
transformation. In Proceedings of the 20th International Conference on Ma-
chine Learning (ICML-03), pages 608–615.

Steckelmacher, D., Plisnier, H., Roijers, D. M., and Nowé, A. (2019). Sample-
Efficient Model-Free Reinforcement Learning with Off-Policy Critics. arXiv
e-prints, page arXiv:1903.04193.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning. Artif. Intell.,
112(1-2):181–211.

Taylor, M. E. and Stone, P. (2007). Cross-domain transfer for reinforcement
learning. In Proceedings of the 24th international conference on Machine learn-
ing, pages 879–886. ACM.

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning
domains: A survey. Journal of Machine Learning Research.

Taylor, M. E., Stone, P., and Liu, Y. (2007). Transfer learning via inter-task
mappings for temporal difference learning. Journal of Machine Learning Re-
search, 8(Sep):2125–2167.

