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ABSTRACT
We propose a novel multi-objective reinforcement learning algo-
rithm that successfully learns the optimal policy even for nonlinear
utility functions, a class of utility functions that pose a challenge
for SOTA approaches, both in term of learning efficiency as well
as the solution concept. A key insight is that, by proposing a critic
that learns a multi-variate distribution over the returns, which is
then combined with accumulated rewards, we can directly opti-
mize on the utility function, even if it is non-linear. This allows us
to vastly increase the range of problems that can be solved com-
pared to those which can be handled by single-objective methods
or multi-objective methods requiring linear utility functions, yet
avoiding the need to learn the full Pareto front. We demonstrate
our method on multiple multi-objective benchmarks, and show
that it learns effectively where baseline approaches fail.
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1 INTRODUCTION
Multi-objective decision problems are ubiquitous, as many real-
world problems require trading off different goals. For example, we
may want to maximise the power output of a hydroelectric power
plantwhileminimising the risk of flooding further downstream [6],
or we may want to maximise the radiation used to kill cancer cells,
while minimising the damage to healthy surrounding tissues in ra-
diotherapy [8]. In multi-objective reinforcement learning (MORL),
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agents learn to balance different objectives by interacting with the
environment.

Of course, depending on the decision maker, some trade-offs are
preferred above others.The utility function – the function that con-
verts a multi-objective return to a single, scalar preference score –
can help the MORL process find the policy that leads to the pre-
ferred outcome. However, when user preferences are non-linear
– as human preferences often are – the utility function cannot be
used to straightforwardly reduce a multi-objective problem to a
single-objective one. Dedicated multi-objective models and meth-
ods are required, even if the utility function is known a priori [16].
After all, reinforcement learning (RL) relies heavily on the assump-
tion that optimizing the (discounted) sum of individual rewards
will also optimize the overall problem. But with non-linear utility
functions, the sum of individual utilities is not equal to the utility
over the return. This makes our setting a hard-to-solve problem,
as the vast majority of RL algorithms cannot be straightforwardly
applied: they use the Bellman equation, which takes advantage of
this sum-of-rewards assumption. Moreover, most work on MORL
applies the utility function on the expected returns, not directly
on the discounted sum of rewards (we explain in details the differ-
ences between these two optimality criterions in Section 2.2). We
focus on the latter, which implies that each policy evaluation is rel-
evant to the user in terms of utility. This also means that the utility
function cannot be applied on𝑄-values, as they estimate expected
returns. Perhaps this is why, even though identified as an open
challenge in the seminal survey on MORL [16], this setting is still
severely understudied in the MORL literature, most body of work
instead bypassing this issue by assuming that the utility function
is a weighted sum over the objectives.

In this paper, we overcome this challenge by proposing a novel
algorithm that explicitly keeps track of the different objectives and
correctly applies the non-linear utility function on estimates of
the overall multi-objective return. Our key insight is that, if the
agent learns a multi-variate distribution over the future returns,
we can use this distribution to bootstrap, enabling us to exploit
the Bellman equation in MORL. Using this insight, we propose
an actor-critic method we call Multi-Objective Categorical Actor-
Critic (MOCAC), that uses such bootstrapping in its critic. We im-
plement and demonstrate our methods onmultiple multi-objective



benchmarks, and show that they learn effectively where single-
objective baselines fail. To the best of our knowledge, this is the
first MORL algorithm that exploits a priori known non-linear util-
ity functions to optimize the expected utility.

2 BACKGROUND
2.1 Multi-Objective Reinforcement Learning
In reinforcement learning (RL), an agent learns to optimise its be-
haviour by interactingwith the environment. In this paper, we deal
with decision problems with multiple objectives, and model this as
a multi-objective Markov decision process (MOMDP). A MOMDP is
a tuple,M = (S,A,T , 𝛾, ®R), where S,A are the respective state
and action spaces, T : S ×A ×S → [0, 1] is a probabilistic transi-
tion function, 𝛾 is a discount factor determining the importance of
future rewards and ®R : S×A×S → R𝑛 is an𝑛-dimensional vector-
valued immediate reward function. In single-objective RL, 𝑛 = 1
while in multi-objective reinforcement learning (MORL), 𝑛 > 1.

When 𝑛 = 1, the goal is to find a policy 𝜋 that maximizes the ex-
pected sumof discounted rewards, i.e.𝜋∗ = argmax𝜋 𝐸 [

∑ℎ
𝑡=0 𝛾

𝑡𝑟𝑡 |𝜋, 𝑠0].
However, when 𝑛 > 1, these sums can lead to returns for which,
without any additional information, there is no clear winner (e.g.,
we cannot decide which return is optimal between (0, 10), (5, 5)
or (10, 0)). We thus assume the existence of a utility function 𝑢
which, given a vectorial return, outputs a preference score (the
utility of the decision maker) that can be used to rank the said
vectorial returns. For example, given 𝑢 = min(𝑟0, 𝑟1), return (5, 5)
is the best choice between (0, 10), (5, 5) and (10, 0) as they have
utilities of 0, 5, 0 respectively. MORL distincts two criterions to op-
timize a MOMDP under: the expected scalarized return (ESR) and
the scalarized expected return (SER). Depending on the criterion,
the resulting optimal policy can be vastly different.

2.2 ESR versus SER
In most MORL research the agent aims to compute a policy 𝜋 that
optimises the utility of the expected return, i.e.,

𝜋∗ = argmax
𝜋

𝑢

(
𝐸

[
ℎ∑
𝑡=0

𝛾𝑡 ®𝑟𝑡 |𝜋, 𝑠0

])
(1)

where the utility function, 𝑢, can be any monotonically increas-
ing function in all objectives. This is known as the scalarized ex-
pected return (SER) optimisation criterion.The particularity of this
criterion is that the utility is only optimal on the average of mul-
tiple executions of the learned policy. While this can be useful for
some problems, most of the time the utility should be optimal for
a single policy execution (the utility of the policy thus depends on
a single roll-out).

Therefore the agent should maximise the expected utility over
single policy executions, i.e.,

𝜋∗ = argmax
𝜋

𝐸

[
𝑢

(
ℎ∑
𝑡=0

𝛾𝑡 ®𝑟𝑡

)
|𝜋, 𝑠0

]
(2)

This is the expected scalarized return (ESR) criterion. We illus-
trate the difference between those two solution concepts using a
small example. Consider a single-step, 2-objective MOMDP with

two possible actions 𝑎0, 𝑎1. Action 𝑎0 always results in reward
®𝑟 = (3, 3), while action 𝑎1 results with equal probability in either
®𝑟 = (0, 10) or ®𝑟 = (10, 0). Under ESR, given 𝑢 = min(𝑟0, 𝑟1), the
optimal policy is to always take 𝑎0 since it results in the highest
utility 𝑢 = 3 (compared to 𝑢 = 0 for 𝑎1). However, in expecta-
tion, i.e., over many policy runs, 𝐸 [®𝑟 |𝑎1] = (5, 5). Under the SER
criterion, given the same utility function, the optimal policy is to
always take 𝑎1.

Most body of work in MORL focusses on linear utility func-
tions, i.e., the utility is a weighted sum over the objectives. A nice
property is that for this class of utility functions SER is equivalent
to ESR [14]. Moreover, if the linear utility function is known, the
MOMDP can be reduced to a single-objective MDP on which we
can apply single-objective methods [16].

In contrast, dedicated methods are required for non-linear util-
ity functions. However, under SER, we can still take advantage of
classic value-basedmethods [22], but this is not possible under ESR.
The lack of methods for ESR MORL algorithms was identified as
an important open problem in the seminal survey on MOMDPs. In
this paper, we address this problem.

3 MULTI-OBJECTIVE CATEGORICAL
ACTOR-CRITIC

The actor-critic framework has been used to produce many state-
of-the-art deep reinforcement learning algorithms. At its essence,
it leverages two components. On the one hand, the actor learns
a probability distribution over the actions in A, conditioned on a
given state. These probabilities are updated regularly, increasing
the probabilities of actions that lead to high returns by using the
negative log-likelihood loss [24].

On the other hand, the critic learns to estimate the future ex-
pected returns for a given state-action pair. This estimate is com-
monly known as the 𝑄-value (and 𝑉 -value if conditioned on the
state only). Using a critic allows the actor to be updated at every
timestep, by estimating the future returns using the critic instead
of waiting for them to be played out. Additionally, the use of the
Advantage metric 𝐴(𝑠𝑡 , 𝑎𝑡 ) = 𝑄 (𝑠𝑡 , 𝑎𝑡 ) − 𝑉 (𝑠𝑡 ) introduced by the
Advantage Actor-Critic algorithm [9] has been shown to improve
the stability of the learning process by reducing variance. Using
this metric, we can formalize the policy-update rule as follows:

L(𝜋) = −
𝑇∑
𝑡=0

𝐴(𝑠𝑡 , 𝑎𝑡 ) log(𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ))

= −
𝑇∑
𝑡=0

(𝑟𝑡 + 𝛾𝑉𝜓 (𝑠𝑡+1) −𝑉𝜓 (𝑠𝑡 )) log(𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ))

(3)

where 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 are respectively the state, action, reward at timestep
𝑡 . The actor is represented by the policy 𝜋 parametrized by 𝜃 , while
the critic is represented by𝑉 parametrized by𝜓 . This allows the ac-
tor be updated at every timestep, improving for sample efficiency.

In this paper we generalize the core of the actor-critic frame-
work (Equation 3) to the ESR, known utility setting. This allows
us learn a policy that directly optimizes on the user utility, while
using a critic to increase sample efficiency. To this end, two main
challenges need to be overcome:



(1) the utility function𝑢 can only be applied on the total episodic
return, while the action probability distribution for state 𝑠𝑡
is updated according to the future returns.

(2) by using 𝑉 in Equation 3, the policy is updated based on
an estimate of the expectation over the returns. Using 𝑢 to
scalarize a vectorial 𝑉 -value would amount to a scalariza-
tion over the expectation of the returns (SER), which is dif-
ferent from our setting. We showcase why this difference is
crucial in Section 5, and how it can lead to drastically differ-
ent policies.

3.1 Accrued Rewards
The utility function can only be applied on whole episodic returns.
Thus, at any timestep 𝑡 , it is essential to not only estimate the future
rewards, but also the accrued rewards: the rewards accumulated
from timestep 0 until timestep 𝑡 .

Consider a 2-objective MOMDP where, at timestep 𝑡 > 0, the
agent has already accumulated a total reward ®𝑟 = (5, 0). The pref-
erences of the decision maker are formalized as the non-linear util-
ity function 𝑢 = min(𝑟0, 𝑟1). Let us say the agent has two possible
actions, each leading it to a final state, thus ending the episode.
The first action 𝑎0 results in reward ®𝑟𝑡 = (2, 2), while the second
action 𝑎1 results in reward ®𝑟𝑡 = (0, 5). If only future rewards are
considered, executing 𝑎0 will result in𝑢 = 2, while 𝑎1 will result in
𝑢 = 0 (𝑎0 is optimal). However, if we take into account the accrued
rewards, 𝑎0 will result in a total episodic return of (7, 2) (𝑢 = 2),
while 𝑎1 will result in (5, 5) (𝑢 = 5). In this case, the action leading
to the highest user utility is 𝑎1. We thus propose to incorporate
the accrued reward in order to make correct use of 𝑢. Given, at
timestep 𝑡 , the future discounted return ®𝑅𝑡 =

∑𝐻
𝑘=𝑡 𝛾

𝑘−𝑡 ®𝑟𝑘 , we de-
fine the accrued reward as:

®𝑅−𝑡 =
𝑡−1∑
𝑘=0

𝛾𝑘 ®𝑟𝑘 (4)

The episodic return is then simply the sum of the accrued re-
wards and ®𝑅𝑡 :

®𝑅 = ®𝑅−𝑡 + 𝛾𝑡 ®𝑅𝑡 (5)

By incorporating the accrued reward into the actor-update equa-
tion (Equation 3), we can directly optimize the policy on the user
utility. This would lead to the the following equation:

L(𝜋) = −
𝑇∑
𝑡

(
𝑢 ( ®𝑅−𝑡 + 𝛾𝑡 (®𝑟𝑡 + 𝛾𝑉𝜓 (𝑠𝑡+1)))−

𝑢 ( ®𝑅−𝑡 + 𝛾𝑡𝑉𝜓 (𝑠𝑡 ))
)
log(𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ))

(6)

with the output of 𝑉𝜓 an 𝑛-dimensional vector.
Note that by using a history of past rewards to update a policy

conditioned on state 𝑠𝑡 we break the Markov property. This, how-
ever, can be prevented by conditioning the state on the accrued
rewards. We note that conditioning can be necessary to reach opti-
mal utility in some environments, but for the environments in this
paper it was not necessary in practice.

3.2 Distributional Critic
Since the goal of our setting is to learn a policy that leads to the
highest user utility for every single evaluation, 𝑢 needs to be ap-
plied on the episodic return, not on the expected return. In light of
this, wewill incorporate distributional reinforcement learning into
our algorithm, by creating a critic that estimates a multi-variate
distribution 𝑍 over return values, inspired by the work by [3].

In single-objective RL, the expected return from a state 𝑠𝑡 ,𝑉 (𝑠𝑡 ),
can be decomposed into a distribution 𝑝𝑖 over future returns:

𝑉 (𝑠𝑡 ) =
∑
𝑖

𝑧𝑖𝑝𝑖 (𝑠𝑡 ), (7)

where 𝑝𝑖 represents the probability of having a return 𝑧𝑖 from state
𝑠𝑡 . Learning the whole distribution instead of just the expected re-
turn leads to more stable learning. To solve our multi-criteria set-
ting, we build upon this idea, and extend it to the multivariate case,
allowing us to learn the distribution over 𝑛-dimensional future re-
turns. This is essential, as we need to sum the accrued return with
future returns before applying the utility function and taking the
expectation.

Bellemare et al. use a discrete distribution parametrised by 𝑁 ∈
N, as it is computationally friendly and highly representative. Its
support is the set of atoms {𝑧𝑖 = 𝑉MIN + 𝑖Δ𝑧 : 0 ≤ 𝑖 < 𝑁 }, with
Δ𝑧 := 𝑉MAX−𝑉MIN

𝑁−1 , where 𝑉MIN,𝑉MAX ∈ R represent the smallest
and largest return values of the distribution, respectively. Please
note that 𝑉MIN and 𝑉MAX are bounds on the returns, not on the
value, but we use the𝑉 -notation to remain consistent with [3]. We
can see this distribution as a discrete set of 𝑁 categories, where
each category 𝑝𝑖 represents the probability of ending with a return
𝑅𝑡 ∈ [𝑧𝑖 , 𝑧𝑖+1 [.

For our algorithm, we require a multivariate distribution where
𝑧𝑖 represents a vectorial return. As each objective has a separate
𝑉MIN,𝑉MAX, the set of atoms becomes :

{ ®𝑧𝑖 ...𝑘 = (𝑉MIN1
+ 𝑖Δ𝑧1, . . . ,𝑉MIN𝑛 + 𝑘Δ𝑧𝑛) :
0 ≤ 𝑖 < 𝑁, . . . , 0 ≤ 𝑘 < 𝑁 }. (8)

where we assume the same number of categories 𝑁 for each
objective-dimension, resulting in a discrete distribution parametrized
by 𝑁𝑛 . Regardless, 𝑉 (𝑠𝑡 ) is computed in the same manner as the
single-objective case (Equation 7).

Because the critic now represents a full distribution instead of
an expected value, we overcome the second challenge of our set-
ting: since ®𝑧𝑖 ...𝑘 is defined as a return (with its associated probabil-
ity 𝑝𝑖 ...𝑘 ), it can be converted into a preference score using𝑢 under
the ESR criterion. This results in the following equation:

𝑢𝑡 =
∑
𝑗

𝑢 ( ®𝑅−𝑡 + 𝛾𝑡 ®𝑧 𝑗 )𝑝 𝑗 (𝑠𝑡 ), (9)

where, for conciseness, the index 𝑗 represents each combination
of indexes 𝑖 . . . 𝑘 .

Note thatwe include the accrued reward as defined in Section 3.1
to correctly compute the utility.

Using this equation, we propose a novel actor-critic algorithm
formulti-objective optimizationwhose parametric policy optimizes
the user utility directly by performing gradient descent on the fol-
lowing loss function:



L(𝜋) = −
𝑇∑
𝑡=0

𝐴(𝑠𝑡 , 𝑎𝑡 ) log(𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ))

= −
𝑇∑
𝑡=0

(
∑
𝑗

𝑢 ( ®𝑅−𝑡 + 𝛾𝑡 (𝑟𝑡 + 𝛾 ®𝑧 𝑗 ))𝑝 𝑗 (𝑠𝑡+1)−∑
𝑗

𝑢 ( ®𝑅−𝑡 + 𝛾𝑡 ®𝑧 𝑗 )𝑝 𝑗 (𝑠𝑡 )) log(𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )) .

(10)

As for the critic, we compute the distributional Bellman update
T̂𝑧 𝑗 := ®𝑟𝑡 + 𝛾 ®𝑧 𝑗 for each atom ®𝑧 𝑗 , for a given sample transition
(𝑠𝑡 , 𝑎𝑡 , ®𝑟𝑡 , 𝑠𝑡+1). We then distribute its probability 𝑝 𝑗 (𝑠𝑡+1) to the
immediate neighbours of T̂𝑧 𝑗 . Each of the components of the pro-
jected update is:

(ΦT̂𝑍 (𝑠𝑡 ))𝑖 =
∑
𝑗

1 −
|[T̂𝑧 𝑗 ]𝑉MAX

𝑉MIN
− ®𝑧𝑖 |

Δ𝑧


1

0

𝑝 𝑗 (𝑠𝑡+1), (11)

with [.]𝑎
𝑏
bounding the argument between [𝑎, 𝑏].

We use the cross-entropy term of the KL-divergence as the loss
function for the critic:

𝐷𝐾𝐿 (ΦT̂𝑍 (𝑠) | |𝑍 (𝑠)) . (12)
Thus, we proposeMulti-Objective Categorical Actor-Critic (MO-

CAC), an algorithm that optimizes the utility under the ESR crite-
rion and is able to take advantage of any kind of monotonically in-
creasing utility function. To the best of our knowledge, it is the first
reinforcement learning algorithm to cope with this setting. More-
over, we show in the experimental section that it is also stable and
sample-efficient.

3.3 Policy Gradient as a Baseline
Since no other RL algorithms that cope with our setting currently
exist, we propose to adapt the classic policy gradient algorithm, Re-
inforce [24], tomulti-objective optimization. Reinforce uses the dis-
counted return to update its policy using the negative log-likelihood
loss. Since Reinforce is an actor-only method, the policy is up-
dated at the end of every episode, once the full discounted return
is known. This means that, by also keeping track of the accrued re-
wards (as explained in Section 3.1) the utility function can be used.
Thus, as a baseline, we propose a multi-objective variant of Rein-
force called MOReinforce in the experimental section, that opti-
mizes the user utility under ESR using the following loss equation:

L(𝜋) = −
𝑇∑
𝑡=0

𝑢 ( ®𝑅−𝑡 + 𝛾𝑡 ®𝑅𝑡 ) log(𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )) (13)

4 ABLATIVE STUDY
To demonstrate the need of a distributional critic, we first perform
an ablative study on a (new) simple environment we call Split. We
compare our method with a modified version. This version takes
into account accrued rewards, but uses a critic that outputs 𝑉 (𝑠𝑡 ).
Concretely this version – called MOAC in this experiment – uses
Equation 6 to update its actor. MOAC’s critic improves according

B0

. . .

. . .

(3, 3) (0, 10)

(10, 0)

00

01

Figure 1: A visual representation of the Split environment.
In our experiment, the length of each hallway is 10.

to a vectorial version of Temporal-Difference (each objective is up-
dated independently):

𝑉 (𝑠𝑡 ) ← 𝑉 (𝑠𝑡 ) + 𝛼 (®𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡 )) (14)
where 𝛼 is the learning rate. Finally, MO Reinforce is used as a

baseline.
The Split environment, depicted in Figure 1, is defined as follows:

in the start-state, the agent can choose between two hallways of
equal length.The first one leads to a reward (3, 3), while the second
one leads to either a reward (10, 0) or (0, 10).

We use a synthetic utility function that multiplies both rewards
together1:

𝑢 = 𝑟0𝑟1 (15)
As such, the utilities for reaching the first and second hallway

are 9 and 0, respectively.
Results are shown in Figure 2. Both MOCAC and MO Reinforce

learn policies that lead to the optimal utility. MO Reinforce doesn’t
use a critic, and applies 𝑢 directly on the episodic return. We thus
expect it to reach optimality. MOAC however, learns to take the
wrong hallway leading to a utility of 0. The reason behind this be-
haviour lies in the critic. It learns the expected values of each ob-
jective rather than a distribution over the returns. These expected
values are (3, 3) and (5, 5) for the first and second hallway, respec-
tively. Applying the utility on the resulting 𝑉 -values leads to an
incorrect estimate of 𝑢 = 25 for the second path, which in turn
leads to corrupted advantages – and thus a poor performance –
for the actor gradient.

Finally, as we can see in Figure 2, even though MOCAC has
many more parameters to learn than MO Reinforce, it reaches the
optimal utility at an earlier stage, since the actor-critic algorithm
makes an update at every timestep, while the baseline only updates
its estimators at the end of each episode.

5 EXPERIMENTS
In order to test the effectiveness and sample-efficiency of MOCAC,
we evaluate it on two different MOMDP benchmarks from the
MORL literature. All experiments comparewith our proposed base-
line algorithm, MO Reinforce, as well as single-objective methods.
All experiments are averaged over 5 runs. All hyperparameters and
network architectures are reported in the Appendix.

We note that, while each experiment uses a utility function that
matches a plausible real-life scenario, early experiments showed

1To ensure positive rewards, it is implemented as 𝑢 = max(0, 𝑟0)max(0, 𝑟1) .
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Figure 2: Results for the Split environment. Using a distribu-
tion over returns (MOCAC) is key for learning optimal poli-
cies when using a critic. When this is not the case (MOAC),
the ESR criterion is not met.

that our algorithm can cope with many types of utility functions
and our conclusions remain valid.

5.1 Deep-Sea-Treasure
Deep-Sea-Treasure is a classic multi-objective benchmark [21] in
which the agent controls a submarine in search for treasure. Deeper
in the ocean lies higher-valued treasures, but it will take longer to
reach them. Thus, there is a trade-off between treasure-value and
time.

Linear Utility Function. We consider two scenarios for this en-
vironment. Although our focus lies in the non-linearity of utility
functions, we first show that MOCAC performs just as well on lin-
ear utility functions. In this scenario, we use a linearly weighted
sum as utility function, i.e.,𝑢 = 𝑤𝑟0+(1−𝑤)𝑟1 and𝑤 ∈ 0, 0.1, . . . , 1.

As explained in Section 2.2, in such a setting ESR is equivalent
to SER. The utility function 𝑢 can be applied on the individual re-
wards, reducing the MOMDP to a MDP. Thus, at each timestep,
the scalar reward 𝑟𝑡 = 𝑢 (®𝑟𝑡 ). As a baseline, we evaluate the well-
known single-objective Advantage Actor-Critic (A2C) algorithm
[9] on this MDP, as it is the one closest to our method. We call this
baseline A2C (timestep).

Non-linear Utility Function. In a second scenario we consider a
non-linear utility function since a key contribution of our proposed
method is that it can cope with this class of functions. In this set-
ting, a debt-ridden crew is seeking treasure to pay back their cred-
itors before some deadline. If they are late, they have to pay a late-
fee penalty, as well as interests for every additional timestep. We
translate this scenario in the following utility function:

𝑢 =

{
ln(1 + 𝑒 (𝑟0−𝑑0) ) if 𝑟1 ≤ 𝑑1

ln(1 + 𝑒 (𝑟0−𝑑0) ) − (𝑟1 − 𝑑1)2 − 𝑝 if 𝑟1 > 𝑑1,
(16)

where 𝑑0 is the debt, 𝑑1 the deadline, and 𝑝 the penalty. The
first term is a softplus function, meaning that any treasure with a
lower value than the debt will yield a zero reward, but the crew is of
course free to keep any additional spoils.The other terms represent
the interests and penalty. In this case, 𝑑0 = 45, 𝑑1 = 10, 𝑝 = 10,
resulting in the sixth treasure being optimal (out of ten).

For this scenario, we include A2C (timestep) as well. While this
approach is not theoretically sound for non-linear utility functions,
it provides an insight into what happens if the multi-objective as-
pect is ignored.

Since in this case timestep scalarization does not lead to the cor-
rect user utility, we propose another MOMDP to MDP transform,
such that single-objectivemethods can be applied, evenwith a non-
linear 𝑢. During any non-terminal timestep, the MDP returns a
zero-reward 𝑟𝑡 = 0. However, the actual vectorial rewards are ac-
cumulated in the background until a terminal state is reached (also
taking into account𝛾 ). During the last, terminal timestep, the accu-
mulated vectorial rewards correspond to the episodic return. The
scalar reward which is then returned by the MDP corresponds to
the utility of this return, i.e., 𝑟𝑡 = 𝑢 ( ®𝑅𝑡 ).

Two issues arise with this transform. Firstly, it reduces the prob-
lem to a single-objective MDP with a highly sparse reward func-
tion. Such sparse problems are notoriously hard to learn, especially
for long episodes (a well-known example is the Atari 2600 game
Montezuma’s Revenge) [4]. Secondly, similarly as with accrued re-
wards, this transform breaks theMarkov property. Still, we noticed
that augmenting the state-space to recover the Markov property
worsened the agent’s performance. It is thus omitted, leaving only
the sparsity problem.

As a baseline, we train A2C on this transformed MDP, which
we call A2C (terminal). As, to our knowledge, no specific known-
utility ESR methods presently exist, this is the only method – with
our proposed algorithm MOCAC and baseline MO Reinforce – to
cope with this setting.

5.1.1 Results. We first discuss the linear utility function. Regard-
less of the value for the weight 𝑤 , MO Reinforce is not able to
learn well because, unable to explore beyond the first treasure, it
sticks to the easily obtainable reward the treasure provides. In con-
trast, both the A2C (timestep) and A2C (terminal) baselines learn
the optimal policy. However, differences in learning speed appear
depending on the weight value.

For example, low values for𝑤 result in lower convergence speeds
for A2C (terminal). Since it only receives non-zero rewards at the
end of the episode, it spends more time exploring compared to
A2C (timestep). On the other hand, with high values for 𝑤 , A2C
(timestep)’s convergence speed decreases compared to the other
algorithms, even though rewards are provided at every timestep.
In this case, exploration is beneficial for A2C (terminal). It reaches
later treasures earlier than A2C (timestep).

Regardless, MOCAC proves to be robust to the differences in
weights, as it systematically learns the optimal policy. Moreover,
its convergence speed is on par with or faster than the best per-
forming baseline for each𝑤 .

With a non-linear utility function, the story becomes quite dif-
ferent: only the explicitlymulti-objectivemethods consistently reach
the optimal solution. As expected, A2C (timestep) is unable to learn



0 1 2 3 4 5

·104

−0.5

0

0.5

1

timesteps

ut
ili
ty

MOCAC
MOReinforce
A2C (timestep)
A2C (terminal)

Figure 3: Results for Deep-Sea-Treasure, using linear util-
ity with weight 𝑤 = 0.9. A2C (timestep) displays a slower
convergence speed than MOCAC and A2C (terminal). As for
most weights, is stuck at the first treasure.

0 0.2 0.4 0.6 0.8 1

·106

−1 · 103
−1 · 102
−1 · 101

0

1 · 101
1 · 102
1 · 103
1 · 104

timesteps

MOCAC MOReinforce
A2C (terminal) A2C (timestep)

Figure 4: Results for Deep-Sea-Treasure, using a non-linear
utility function. Only the dedicated multi-objective ap-
proaches learn the optimal policy. A2C (terminal) shows un-
stable learning curves and A2C (timestep) fails to learn any
decent policy.

any decent behaviour. Since scalarisation occurs at every timestep,
𝑢 never receives the total time spent to find the treasure, mean-
ing the deadline penalty is never applied. Because time is incor-
rectly taken into account, this baseline learns a policy that seeks
the biggest treasure, but is also the one that is the furthest away.
This yields a poor episodic utility.

Secondly, although the terminal scalarisation does receive the
correct utility, learning quickly stagnates and the algorithm is un-
able to reach optimality. The harsh time constraints (the quadratic
time factor as well as the penalty term) make exploration difficult.
Moreover, since scalarisation is applied, it occurs that high trea-
sure values get negated by the time penalties, especially when the
episode contains unnecessary steps. After 1.5× 105 timesteps, the
learnt policy leads the submarine to the nearest treasure and is in-
capable of learning better behaviour.

In contrast, both and MOCAC reach the optimal treasure. Even
though the time constraint penalises the total utility, keeping track
of the different objectives separately benefits the learning process.
In terms of convergence speeds, MOCAC reaches the optimal trea-
sure first but, as the episodes are short, the number of additional
updates compared to the number of episodes amounts to an av-
erage of only 0.2%. Thus, it is not so much the sample efficiency
but the reduction in variance – due to the advantage – that helps
MOCAC perform better than MO Reinforce.

5.2 Minecart
Finally, we perform experiments on a complex environment with a
high-dimensional state-space: Minecart [1]. Starting at a base sta-
tion, the agent controls a cart whose goal is to mine diverse ores
from the mines scattered in the environment, and go back to the
base to sell the ores.

The agent can execute 6 possible actions: it can accelerate, decel-
erate and rotate the cart to the left or right. It can mine ores, which
will only be effective if it is located in a mine. It can also simply

do nothing. There are a total of 2 objectives: the amount of ores
mined, and the fuel consumption.

We perform two sets of experiments. In the first, the agent is
trained on the 6-dimensional, continuous state-space from the en-
vironment (containing features such as cart position, velocity, …).
In the second, the agent is trained on 84 × 84 pixel frames, using
the same image pre-processing and convolutional network archi-
tecture as in [10].

Non-linear Utility Function. As with the Deep-Sea-Treasure en-
vironment, we imagine a setting where a known non-linear utility
function needs to be applied. The agent is a mining company with
a contract to provide a specific amount of ores at an agreed-upon
price. The leftover ores can be sold at market price. If there is a
breach of contract due to insufficient amount of ores, a compensa-
tion penalty will be applied. Finally, fuel is seen as an additional
expense. This can be formalised in the following utility function:

𝑢 =

{
𝑡0𝑝0 + (𝑟0 − 𝑡0)𝑝1 − 𝑟1/20 if 𝑡0 ≤ 𝑟0

𝑟0𝑝0 − 𝑐 − 𝑟1/20 if 𝑡0 > 𝑟0,
(17)

where 𝑡0, 𝑝0, 𝑝1, 𝑐 are the request ore amount, contract price,
market price, and compensation penalty, respectively. In our sce-
nario, 𝑡0 = 0.7, 𝑝0 = 5, 𝑝1 = 7, 𝑐 = 2.

5.2.1 Results. As can be seen in Figure 5 and Figure 6, for both
sets of experiments MOCAC reaches the highest utility. The agent
almost consistently fills its cart to capacity, and goes back to the
base station to sell the minerals.

Looking at the baselines, we observe different behavior depend-
ing on the state-space used for training. For the 6-dimensional
state-space, MO Reinforce on average performs on-par with A2C
(terminal), despite the higher variance and worse sample efficiency
than its actor-critic counterpart. Both agents do not always fill
their cart to full capacity, resulting in a lower utility.
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Figure 5: Results for Minecart using a non-linear 𝑢 with a 6-
dimensional continuous state-space. MOCAC outperforms
all baselines. MO Reinforce performs on-par with A2C (ter-
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Figure 6: Results for Minecart using a non-linear 𝑢 with
84 × 84 pixel frames, similar to the Atari 57 suite. MOCAC
outperforms all other algorithms.

With pixel frames their behavior is different. Although the net-
work architecture is (except for the output) the same as MOCAC,
some A2C (terminal) runs never learn to mine ores. MO Reinforce
only partially fills its cart, usually just enough to reach the quota,
but with nothing left to sell at market price. All in all, combining
the actor with a distributional critic in MOCAC is key to obtain
good utility.

6 RELATEDWORK
Current MORL methods focus almost exclusively on SER. They
can be broadly divided into two main categories: single-policy and
multi-policy algorithms [21]. In the first case, one tries to learn
a single, optimal policy for a given set of preferences, i.e., for a
known utility function. In the second case, the utility function is
unknown (or uncertain) and the goal is to learn a set of policies
that cover all possible utility functions, i.e., a coverage set.

Most of the recent work onMORL falls into the second category
and assumes an unknown, but linear utility function. The goal is
then to train an agent such that the optimal policy can be recov-
ered for any preference weights. [17] propose Optimistic Linear
Support (OLS), a generic method that iteratively selects different
sets of weights and calls a single-objective subroutine to find the
corresponding optimal policy. [11] extend this method for Deep
RL. Another approach, taken by [2, 7], is to directly optimise on
the coverage set without single-objective subroutine, bymodifying
the Bellman equation. In [5], Fitted Q-Iteration (FQI) is extended
to use a modified Q-network conditioned on preference weights.
Similarly, [1] use such a conditioned Q-network to extend Deep
Q-Networks (DQN). Moreover, a similar network is used in [25],
in combination with a multi-objective Bellman operator. All these
approaches aim to learn a convex coverage set [16], which is the
coverage set for linear utility functions, but can also be used to
construct a coverage set for unknown non-linear utility functions
when policies are allowed to be stochastic, employingmixture poli-
cies [20].

In the setting where the utility function is decided upon before-
hand, [12, 19] use linear utility functions, with the known issue
that a small change in weights might lead to completely different
policies [21]. Non-linear utility has been investigated in a tabular
setting by [22], who use a Chebyshev function. Moreover, mono-
tonically increasing utility functions in general have been investi-
gated in the (much simpler) bandit setting [18], by modelling them
using a Gaussian process and interacting with the user to obtain
preference information.

Finally, when the utility function is unknown, can be non-linear,
but only deterministic policies are allowed, the coverage set is the
Pareto front of deterministic (possibly non-stationary) policies. [13,
15, 23] learn such a Pareto front usingmetrics such as hypervolume
or non-dominance.

7 CONCLUSION
We proposed Multi-Objective Categorical Actor-Critic (MOCAC).
To our knowledge, this is the first actor-critic RL algorithm that
can handle MORL under the expected scalarized returns criterion,
where the utility function can be non-linear. MOCAC takes into
account accrued rewards and, in contrast to single-objective actor-
critic RL algorithms, its critic only works if it learns a multivariate
distribution over future returns, rather than an expected value over
future returns. We show empirically that MOCAC can successfully
learn in MOMDPs under ESR with a known utility function. Fur-
thermore, we show that it is muchmore sample-efficient and stable
than all the proposed alternatives, clearly indicating that learning
a distribution over the vectorial returns can convey important ben-
efits in this class of problems.

In future work, we aim to learn the non-linear utility function
by interaction with the user (querying its preferences).



Table 1: Hyperparameters for the Split, Deep-sea-treasure
and Minecart environments.

Split Deep-Sea-Treasure Minecart
Common

lr 0.001 0.001 0.0003
𝛾 1.00 0.95 1.00

timesteps 6, 000 1, 000, 000 20, 000, 000
neurons (actor) (26, 20, 2) (132, 50, 4) (6, 20, 20, 6)
non-linearity Tanh Tanh Tanh
clip-grad-norm None 50 50

MOCAC
value-coef 0.5 0.5 0.5

entropy-coef 0.01 0.1 0.1
update every 1 10 200
neurons (critic) (26, 50, 121) (132, 50, 50, 121) (6, 20, 20, 20, 121)

c 11 11 11
𝑉MIN (−1,−1) (0,−20) (0,−4)
𝑉MAX (10, 10) (100, 0) (1.5, 0)

MOAC A2C
value-coef 0.5 0.5 0.5

entropy-coef 0.01 0.1 0.1
update every 1 10 200
neurons (critic) (26, 50, 1) (132, 50, 50, 1) (26, 20, 20, 1)

A EXPERIMENTAL DETAILS
A.1 Split
In the Split environment, the agent chooses between two hallways
of length 11 to traverse. Including the start- and end-states, there
are 26 states.The states are one-hot encoded, resulting in a 26-sized
vector that is given as input to any of the actor and critic estima-
tors.

A.2 Deep sea treasure
Deep sea treasure is a grid-world environment, where the subma-
rine moves on a 11× 12, resulting in 132 different states. The state
number is one-hot encoded, resulting in a 132-sized vector that is
given as input to any of the actor and critic estimators.The rewards
provided by each treasure are made in such a way that every op-
timal treasure × fuel combination is evenly spread out on the
convex coverage set. Treasure values are displayed on Figure 7.

A.3 Minecart
In Minecart, the agent moves a cart in a continuous 2-dimensional
space. The state is represented by a 6-dimensional continuous vec-
tor.

Additionally, we perform experiments using the pixel frames
as observations. The frame pre-processing follows [10]: they are
rescaled to 84 × 84, converted to grayscale and normalized.

All hyperparameters used for all these experiments, including
neural network architectures are listed in Table 1.

18 26 31

44 48,2
56

72 76,3

90
100

Figure 7: The Deep Sea Treasure environment. The agent
starts on the top-left corner and tries to reach any of the trea-
sures. Further treasures are worth more.

Figure 8: The Minecart environment. The base is located at
the top-left corner, while the 5 mines are spread around the
environment.
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