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Abstract—The number of Electric Vehicle (EV) owners is
expected to significantly increase in the near future, since EVs are
regarded as valuable assets both for transportation and energy
storage purposes. However, recharging a large fleet of EVs during
peak hours may overload transformers in the distribution grid.
Although several methods have been proposed to flatten peak-
hour loads and recharge EVs as fairly as possible in the available
time, these typically focus either on a single type of tariff or on
making strong assumptions regarding the distribution grid. In
this article, we propose the MultiAgent Selfish-COllaborative ar-
chitecture (MASCO), a Multiagent Multiobjective Reinforcement
Learning architecture that aims at simultaneously minimizing
energy costs and avoiding transformer overloads, while allowing
EV recharging. MASCO makes minimal assumptions regarding
the distribution grid, works under any type of tariff, and
can be configured to follow consumer preferences. We perform
experiments with real energy prices, and empirically show that
MASCO succeeds in balancing energy costs and transformer
load.

Index Terms—Electric Vehicles, Congestion Management,
Smart Grid, Multiagent Systems, Multiobjective Reinforcement
Learning.

NOMENCLATURE

A Action space
B Battery level
C Collaboration weight
CC Collaboration criteria
CO Collaboration optimization
D Joint observation space
EV Electric Vehicle
G Set of friendly agents
k Decision step
n Number of agents
P Transition function
Q\W\V Utility function
R Reward function
S State space
SO Selfish optimization
U Joint action space
w Preference vector
α Learning rate
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γ Discount factor
ε Non-greedy probability
π Control Policy
Θ Current time
ζ Transformer load

I. INTRODUCTION

Electric Vehicles (EVs) have been regarded as the future of
the automobile industry, as they offer a clean and noiseless
mean of transportation [1]. Additionally, EVs may be used as
energy storage devices in Smart Grid appliances [2]. However,
it is generally known that the power grid could be greatly
affected by the energy demand introduced by EVs [3]. Without
any charging control, EVs automatically charge when plugged-
in, which may cause grid congestion.

Different approaches have been proposed to allow EV
battery recharge while avoiding grid overload. Some of these
approaches are based on multi-tariff charging [4]. However,
time-of-use tariffs alone have been shown to merely shift the
peak load [5], which does not solve the congestion problem.
This happens due to the lack of coordination, as the EV
owners, that primarily care about charging costs, recharge in
the beginning of the cheapest period, causing congestion in
that period.

Another approach is to regard each EV as an intelligent
control system that chooses its own charging schedule. This
type of approach generally models EVs as agents in Multiagent
Systems (MAS). Even though MAS-based technologies are
suitable to the coordinated charging problem, often proposals
are either: (i) centralized [6], [7], which causes scalability
issues; (ii) restricted [5], [8], usually assuming that the distri-
bution station follows a certain control algorithm and interacts
with EVs, or that all EVs follow the same control algorithm; or
(iii) solely based on dynamic pricing interactions [4], which
may take a long time to implement in countries with fixed
price plans [1], [9] due to regulations or structural costs.

We propose a MAS control architecture to coordinate EV
charging by minimizing energy costs, while avoiding grid
overloads and maintaining an adequate battery level. Balancing
between those objectives requires reasoning about the relative
risk of applying each action for all objectives leading to
different trade-offs, as well as the utilities that users would
derive from these available trade-offs. For this reason, we solve
this problem following an explicitly multiobjective approach.
We consider a low-voltage urban network in a radial layout,
in which EVs must avoid overloads in the distribution trans-
former they are connected to.
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We propose the MultiAgent Selfish-COllaborative architec-
ture (MASCO), which is based on Multiagent Multiobjective
Reinforcement Learning and defines locally when an EV
should recharge its battery or wait for a more appropriate time.
EVs are agents in a multiagent architecture and act based on
locally observable information and communication only. Local
information comprises EV’s own battery level and information
regarding its own environment, that is, the transformer load
and energy price. An EV gets information about other EVs
through communication. MASCO agents decide whether to
behave selfishly or collaboratively based on a heuristic, at
a given time. We contribute MASCO as an approximated
algorithm to solve the coordinated charging problem in a
practical and realistic manner. Moreover, MASCO agents can
work concurrently with agents following any type of policy
or learning algorithm and do not require manual inputs in
regard to daily energy requirements. We empirically show that
MASCO learns how to coordinate charging both in time-of-
use and dynamic pricing environments.

The remainder of this article is organized as follows: Section
II defines the Coordinated Charging Problem. Section III
presents related work and Section IV shows a high level
description of our proposal; Section V provides a review on
Smart Grid and Reinforcement Learning; Section VI gives
a detailed description of MASCO; Section VII presents our
experiments, along with discussions. Finally, Section VIII
concludes the article and discusses future work.

II. PROBLEM STATEMENT

We assume a typical situation in a residential area, in which
the local distribution grid is connected to a number of residen-
tial households. Each household has an EV that a consumer
uses for personal transportation. In this article, the consumer
is who uses the car, regardless of whether it is an individual or
a group of people. If too many EVs are recharging at the same
time, this causes an overload in the transformer. Therefore, as
each EV may have a communication link with other cars, EVs
should coordinate to prevent transformer overload.

When an EV is plugged-in, we defer control to an au-
tonomous agent. At each time step k, all agents observe their
local information, receive the transformer load at time step
k−1, may communicate with neighboring agents, and observe
the energy price at time step k. Then, all agents choose and
apply one action, to charge or not charge, which lasts for
a predetermined time interval. Our proposed architecture is
agnostic to the actual implementation of the distribution grid,
which can vary from region to region. It is noteworthy that
the energy price can be both dynamic or fixed.

We define the following requirements for any approach to
tackle this problem:

Requirement 1: Distributed Solution – All agents must
define their policy reasoning over local information and data
received from communication.
Requirement 2: Self-interested agents – We assume that

the agents are not necessarily homogeneous or benevolent

(completely collaborative), since “dumb”1 models may exist
or some agents may refuse to cooperate.
Requirement 3: Unpredictable consumer behavior – We

assume that the consumer is unwilling to manually configure
her daily journey. In practice, the user EV-use profile usually
roughly follows a distribution that can be approximated. How-
ever, the time and energy spent cannot be exactly anticipated.

Because of these requirements for realistic EV charging
problems, finding optimal solutions is typically intractable
for all but the smallest instances. Therefore, in this article,
we propose a heuristic method. Although MASCO cannot be
proved to find optimal policies, we show in our experiments
that it works well under realistic scenarios.

III. RELATED WORK

The Coordinated Charging problem is a relevant research
topic that has been extensively studied and various solutions
have been proposed. Below, we present and discuss the most
recent and similar work to our proposal.

Cao et al. [1] proposed a distributed approach that models
EV coordination as an optimization problem and finds an
optimal policy to reduce energy costs. However, their method
only works for a time-of-use tariff, and agents book in advance
a share of energy from the transformer. It is not clear how their
proposed method deals with heterogeneous agents.

Yu Yang et al. [10] formulate the charging problem as
a Markov decision process, and developed a distributed
simulation-based policy improvement method. However, since
they consider total observability, their approach has scalability
problems.

Karfopoulos et al. [5], Hu et al. [8], and Cao and Chen
[11] proposed non-cooperative game architectures that work
as follows: EV owners select their daily desired charging
based on the predicted price per period, minimizing the energy
costs. Then, one agent related to the distribution infrastructure
defines new tariffs to eliminate congestion in the cheapest
periods. This procedure is iterated until an equilibrium is
achieved. Although their approach is very efficient, an actual
implementation would incur in structural costs and require a
change in regulations to locations that do not use dynamic
pricing. Also, it is not clear how their proposals work con-
comitantly with EVs that follow other control policies.

Vasinari et al. [12] propose a method that does not require
that users manually set their energy usage. In their proposal,
EVs recharge in a shared station2. Ghosh and Aggarwal [13]
proposed a method in which EVs recharge in a shared station
that offers different contracts with a certain amount of energy
at a given price over a deadline of time. However, both
methods needs to take into account all other agents in the
station, which is not a scalable procedure.

Dusparic et al. [14] propose a distributed Multiagent Rein-
forcement Learning approach similar to ours. However, agents
need to know consumer’s desired battery level. This informa-
tion is used both to process an internal feedback related to the

1EVs that always charge whenever plugged.
2Household charging spots can be seen as part of a big “charging station”

, that allocates the available energy among all agents similarly to a bidding
procedure.
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state of charge and to execute a load prediction procedure
to find the most appropriate time slot to recharge. Unlike
MASCO, their proposal requires the consumer’s desired bat-
tery level and has a prediction agent that predicts price and
load for the next 24 hours based on current load, load historical
data and weather forecast.

In summary, existing proposals have some issues in re-
gard to: (i) Other Agents Behavior: many approaches do not
clearly describe how they cope with heterogeneous agents; (ii)
Distribution Infrastructure: some proposals model interactions
between the EVs and the distribution infrastructure, and are
either unusable or hard to apply if the existing infrastructure
cannot be promptly changed; (iii) Energy Tariff Type: most of
the proposals can be applied exclusively for one tariff type; (iv)
Precise Information about Consumer Energy Requirements:
some proposals assume that the consumer is willing and able
to manually set her precise energy needs every day. We argue
that this is unrealistic.

IV. PROPOSAL

MASCO differs from other approaches because it makes
minimal assumptions about the distribution infrastructure as
agents only need to be able to observe the transformer load
and the energy price. MASCO is also able to cope with
heterogeneous agents and to handle any type of tariff.

Our proposal is a distributed Multiagent Multiobjective
Reinforcement Learning System that aims to simultaneously
optimize three conflicting objectives:
• Battery Level – Consumers need a high battery level

before daily travel, therefore agents aim to maximize it.
• Price Paid – Agents aim to minimize the total cost of

energy for the consumers.
• Transformer Overload – Agents explicitly aim to min-

imize the number of transformer overloads.
A good trade-off between the objectives must be found, and

this trade-off should follow the costumer’s preferences. The
solution of a multiobjective problem is a set of policies with
different trade-offs between objectives. Specifically, for each
possible utility function that corresponds to a possible user’s
preferences, the solution set has at least one optimal policy.
This is called coverage set [15]. Given a utility function3

f , typically parameterized by a vector w, it is possible to
select a single optimal solution from the coverage set that
maximizes user utility. It is noteworthy that the manufacturer
or consumer sets her preferences and it can be dynamic; in
this case, the agent should adapt its actuation according to the
user’s preferences.

Using reinforcement learning (RL) provides many advan-
tages. RL can be used to train autonomous agents without
an explicit environment model, which could be difficult to
build due to large-scale and complexity of a smart grid. RL
is adaptive, it can work with different implementations of
distribution systems and adapt when conditions change. For
example, RL can be used with any type of tariff without
requiring customization and MASCO agents adapt to a change

3Also known as a scalarization function.

in usual load when new EVs plug-in. RL deals with partial
observability, in a large-scale smart grid it is not expected
that an EV can communicate with uncooperative EVs from
different brands.

In MASCO, the agents first try to optimize multiple objec-
tives through a Selfish Optimization procedure that outputs a
selfish policy πS . Also, each agent has a communication link
with a set of friendly agents with which it can collaborate.
The local agent learns how its actions affect other agents and
it builds a collaborative policy πC , which intends to help other
agents through a Collaborative Optimization procedure. Fi-
nally a Cooperation Criterion chooses when the agent should
execute πS or πC . For example, when the agent is very low
on battery it may choose to recharge even if there is a risk that
this course of action may result in an overload. The group of
friendly agents may be assembled, for example, by including
all EVs of the same brand in a neighborhood. All the actions
of other agents are not observed and are taken as stochastic
effects of the environment. Although this is an approximate
solution, in practice MASCO achieves good results. Before
we further detail our proposal (Section VI), we first introduce
the fundamental concepts underlying MASCO.

V. FOUNDATIONS

In MASCO, we use Reinforcement Learning (RL) [16]. RL
is an extensively applied technique that has been successfully
applied in many problems is often used in sequential decision
making problems. In each decision step k, the agent observes
the current state of the environment sk and applies an action
ak. The agent observes the new state sk+1, and receives a
reward rk. The agent goal is to learn a policy π : S → A, that
maps each state to the most appropriate action.

Q-Learning [17] is a popular and effective algorithm to
learn how to solve sequential decision problems. Q-Learning
iteratively learns a Q-table, i.e., a function that aims to estimate
the long-term discounted reward associated to each state-action
pair: Q : S × A → R. At each decision step, Q is updated
following:

Qk+1(sk, ak)← (1−α)Qk(sk, ak)+α[rk+γmax
a

Qk(sk+1, a)],

(1)
where rk = R(sk, ak, sk+1) is the observed reward, 0 <
α ≤ 1 is the learning rate that determines how much the
newly acquired information replaces the previous one, γ is
the discount factor that encodes the horizon in which rewards
are relevant and Qk is the current estimate of the Q function.

Q-Learning converges to the optimal Q function: Q∗(s, a) =
E
[∑∞

i=0 γ
iri
]
, and an optimal policy can be derived: π∗(s) =

arg maxaQ
∗(s, a). It is noteworthy that the standard RL

approach only takes into account single-agent and single-
objective domains. However, many real-world decision prob-
lems are more naturally defined by multiple and conflicting
objectives, such as minimizing energy price while avoiding
transformer overloads. In such domains, it is often undesirable,
infeasible, or even impossible to cast the decision problem
to an equivalent single-objective problem. This results in RL
problems in which the task completion is described by a set
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of o reward functions R : S × A × S → Ro, rather than a
single one.

When the utility function, f , that represents the utility of
the user as a function of the value-vectors is fixed throughout
learning and execution, and known a priori, it can be possible
to collapse multiple rewards to a single one. However, this is
only possible if f is linear: Vw = f(V,w) = w ·V, where
w is a weight vector that encodes the relative importance
of objectives. On the other hand, there are other situations
where the weights are not previously known or are expected to
change. In our setting for example, consumer preferences can
change over time. Hence, we need to explicitly take multiple
objectives into account, and adjust the policies accordingly
when the consumer’s preferences change [18].

Even though Multiobjective RL (MORL) has been gaining
attention due to the multiobjective nature of many real-world
domains [19], most multiobjective approaches are applica-
ble only to the single-agent case [15]. On the other hand,
multiagent approaches can be extended to MAS, modeled as
Stochastic Games (SGs), where each agent has its own local
state features, action set, and reward function [20], [21].

Agents might use only their local observations, which re-
duces the number of required Q-table entries. However, it also
introduces an approximation error, as agents must coordinate
without full observability of the state variables. This error can
be alleviated by increasing the frequency of communication to
disambiguate non-observable state information, but communi-
cation is expensive and not always reliable in the real world. In
order to model the coordinated charging problem under a gen-
eral theoretical framework, we extend SGs to a MultiObjective
Partially Observable Stochastic Game (MOPOSG), which is
composed of < S,U ,D, P,Ro11 , ..., R

on
n >, where:

• n is the number of agents.
• S = S1 × · · · × Sn is the state space composed of the

local state space of each agent.
• U = A1 × · · · × An is the joint action space composed

of the action space of each agent.
• D = Z1 × · · · × Zn is the joint observation space con-

taining all possible combinations of agent observations.
• P is the state and observation transition function, where
P (sk,dk,uk, sk+1) denotes the probability of achieving
state sk+1 ∈ S and joint observation dk ∈ D after
executing the joint action uk ∈ U in sk.

• Roii : S ×U × S → Roi is the reward function of agent
Agi that describes a vector of oi rewards, one for each
objective.

In learning problems, P and Roii are unknown to the agent
that can only observe observations and reward returns. Solving
MOPOSG optimally would be both intractable and impracti-
cable in real-world scenarios. Hence, MASCO is a solution to
find a reasonable policy without optimality guarantees.

The closest learning algorithm to MASCO is Distributed
W-Learning (DWL) [22], where each agent has a set of
neighbors with which it can cooperate. All agents outside
its neighborhood are ignored. DWL does not require a single
reward function and can be applied to domains with heteroge-
neous agents. However, Silva and Costa [23] noted that DWL
cannot provide a policy that favors an objective over another

according to user preferences (or constraints) in coordinated
charging problems [14]. Thus, we propose MASCO as an
architecture similar to DWL to solve the coordinated charging
problem in a customized, distributed, and scalable way. We
further detail our proposal in the next section.

VI. MASCO: SOLVING THE COORDINATED CHARGING
PROBLEM WITH RL

We model the EV charging problem as a MOPOSG, in
which each agent has one reward function per objective
and a local observation function. As MASCO is modeled
as a MOPOSG, it takes into account partial observability
and stochasticity introduced by self-interested agents. Unpre-
dictable consumer behavior also increases the environment
stochasticity. MASCO is also a distributed solution as DWL.
Therefore, MASCO fulfills the three requirements we defined
in Section II. Because exact and even bounded approximate
solutions are computationally infeasible, we focus on devising
a heuristic method that works well in practice.

MASCO learns multiple policies in a distributed manner.
An agent learns a policy πiS for each reward function ri,
maximizing it in a selfish manner. Also, for each agent j
with whom the learning agent i wants to collaborate, one
policy πj,iC is learned maximizing each reward function rj,i in
a collaborative manner. Figure 1 visually describe the MASCO
architecture. Note that Selfish Optimization and Collaborative
Optimization are both MORL optimization problems, in which
a single policy is derived from multiple objectives. After
the resulting selfish and collaborative policies are defined, a
Cooperation Criterion chooses which of the two policies is
obeyed in time step k, and the resulting action ak is applied.

Fig. 1. A graphical representation of MASCO. A selfish policy πi
S is learned

for each local reward ri and a collaborative policy πj,i
C is learned for each

reward rj,i of agent j. In each decision step, the selfish and collaborative
optimization algorithms define πS and πC to be executed. A final Cooperation
Criteria decides whether the agent should be selfish or collaborative in k,
defining the resulting action to be executed, ak .

Let o be the number of reward functions to be optimized
for the agent, G the set of agents with whom the local agent
wants to cooperate and are connected to the same distribution
transformer (friendly agents), and r = [r1, . . . , ro]T the
reward vector for all local objectives. QS = [Q1, . . . , Qo]T

is the set of Q-tables related to local rewards, where Qi is
related to objective i. SO(QS , sk) is the Selfish Optimization
Function that returns an action aS defined by the selfish-
based objective optimization for state sk. For example, if the
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agent wants to minimize costs and avoid overloads, a possible
interpretation of this problem in the MASCO architecture is
to store both a Q-table Q1, from which a policy π1

S that
minimizes costs can be extracted, and a Q-table Q2, that can be
used to avoid overloads through a policy π2

S . Even though π1
S

and π2
S optimize only one objective, SO can estimate which

of the two objectives is more important at a given time step
and alternate between the policies according to their relative
importance, leading to an approximate non-stationary policy.

Now, let oj , j ∈ G be the number of re-
ward functions of a given friendly agent j, QC =
[Q1,1, . . . , Q1,o1 , Q2,1, . . . , Qn,on ]T is the set of Q-tables re-
lated to other agents objectives, where Qj,i is related to
objective i of agent j. CO(QC , sk) is the Collaborative
Optimization Function that returns an action aC for sk aiming
to collaborate with other agents. In the above mentioned
example, the agent stores Q-tables Qj,1 and Qj,2 for each
friendly agent j, and each table learns how the local actions
affect the agent j. Then, CO defines the agent that needs help
the most and collaborates with it to optimize one objective.
For example, the local agent detects that j almost ran out
of battery and thus needs to recharge. Then, the local agent
chooses the not charge action to prevent overload.

Finally, CC(aSk , a
C
k ) is a Cooperation Criterion which

chooses if the agent should collaborate or act in a selfish
manner at step k. SO provides the best action for a local
agent, CO for a friendly agent and CC balances both sides.
Applying a selfish action may be beneficial if the transformer
does not overload, which results in an increase of reward
intake. CO and SO are implemented in this article with Linear
Scalarization Functions, i.e.

SO(QS , s) = CO(QC , s) = arg max
a∈A

fQ(a), (2)

where f is a scalarization function, defined in this article as
fQ(a) =

∑
j

∑o
i=1 wiQ

j,i(s, a), where w is the vector of user
preferences. Note that j corresponds to the own agent in the
selfish case.

A linear scalarization is a simple and common function to
model utility (though it cannot provide solutions that could
be optimal under non-linear utility models on the non-convex
portions of a Pareto frontier [24]). Nonlinear scalarization
functions could also be used, however f must be very carefully
chosen, as the use of nonlinear scalarization functions may
preclude convergence [15]. Thus, we left the use of nonlinear
utility functions for this domain as an open problem for further
studies. The w vector may be different for each agent to reflect
the consumer’s personal preferences.

In order to define CC, a W-function is computed as in W-
Learning [25] and DWL. A W-table indicates which objective
is expected to lose more of the long-term reward if its policy
is not obeyed. W-values are updated only when the best action
for a given objective is not executed, following the equation:

W i(sk)← (1− α)W i(sk) + α(Qi(sk, ak)−
(rik + γmax

a
Qi(sk+1, a))),

(3)

where rik is the reward observed for objective i, and Qi is the
Q-table associated to objective i. The winning action aS or
aC is defined according to:

Wwin = max(WS , C ×WC), (4)

where parameter C weights collaboration, WS is the W-
value associated with the objective that has the highest Q-
value in QS , and WC is the W-value associated with QC . If
Wwin = WS , ak = aSk ; otherwise, ak = aCk . The selfish and
collaborative W-values for all objectives are updated with Eq.
3, except the one associated with Wwin.
CC is a heuristic that provides an approximate solution

by simplifying how MASCO chooses between the two poli-
cies based only on its local observations and communica-
tions. Since communications do not provide information about
friendly agents’ preferences or any kind of information for
unfriendly agents, the local agent can only partially observe
the environment. As mentioned before, a decentralized model
introduces approximation errors, therefore this heuristic cannot
provide a global optimal solution.

Another approximation error occurs in the selfish and col-
laborative division. When an agent is selfish, it can increase its
local reward intake without decreasing the global value, which
happens when the transformer does not overload. However,
when an agent is selfish and it causes an overload, all agents
suffer a penalization and the global value decreases. It is
noteworthy that MASCO is not guaranteed to converge, as
it solves a relaxed formulation of the problem. MASCO is
a framework to find a reasonable policy that works well
under realistic scenarios, as we show in our experiments. It
is expected that the computational and space complexity grow
with |G|, as more friendly agents mean more Q-tables and W-
tables that need to be stored and updated. Although updating
all tables and selecting an action require simple calculations, a
large G requires too much space and more samples to compute
a good policy. It can be solved by limiting |G|, which, in turn,
decreases observability.

MASCO is fully described by Algorithm 1. First (steps 1 –
4) the agent arbitrarily initiates one (Q-table, W-vector) pair
for each local objective (Qi, W i) and one pair (QAg,i, WAg,i)
for each objective of agents in G. Then, the agent observes
its own current state and communicates with other agents to
receive their states (step 5). aSk and aCk are then defined (steps
7 – 8) by maximizing the weighted Q-values. Action ak is
chosen according to Wwin, calculated by (4) (step 9) and
executed following an ε-greedy strategy4 (step 10). After the
execution of all actions, the agent then updates all Q-tables
according to the observed local rewards and rewards received
by communication (related to other agents). W-vectors are all
updated except Wwin (steps 12 – 28). Finally, the agent can
observe the next state and execute the same procedure again.

Since the reward functions may have different scales, which
can lead to problems in the resulting policy [23], we perform
a normalization, QN (s, a) = Q(s,a)∑

a′∈A |Q(s,a′)| , before action
selection [26] (Lines 7 and 8 of Algorithm 1).

4With probability 1− ε the action ak will be executed; with probability ε
a random action will be performed.
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Algorithm 1 MASCO learning algorithm
Require: Set of friendly agents G, set of actions A, local

objectives o, local state space S, friendly agents objectives
oAg and state space SAg , weight vector w, cooperation
rate C, discount rate γ, learning rate α.

1: Initialize Qi(s, a) and W i(s), for all objective i.
2: Initialize QAg,j(sAg, a) and WAg,j(sAg) for all objective
j and agent Ag ∈ G.

3: QS = [Q1, . . . , Qo]T

4: QC = [Q1,1, . . . , Q1,o1 , Q2,1, . . . , Q|G|,o|G| ]T

5: Observe sk and receive sAgk ,∀Ag ∈ G.
6: for each decision step k do
7: aSk = arg max

a∈A

∑
Qi∈QS wiQ

i(sk, a) (Eq. 2).

8: aCk = arg max
a∈A

∑
QAg,i∈QC wiQ

Ag,i(sAgk , a) (Eq. 2).
9: Define ak according to Wwin (Eq. 4).

10: All agents execute their actions.
11: Observe sk+1 and receive sAgk+1,∀Ag ∈ G.
12: for each objective i ∈ o do
13: Observe ri.
14: Update Qi with sk, ak, ri, sk+1 (Eq. 1).
15: if W i 6= Wwin then
16: Update W i with sk, ri, Qi (Eq. 3).
17: end if
18: end for
19: for each friendly agent Ag ∈ G do
20: for each objective i ∈ oAg do
21: Receive rAg,i.
22: Update QAg,i with sAgk , ak, r

Ag,i, sAgk+1 (Eq. 1).
23: if WAg,i 6= Wwin then
24: Update WAg,i with sAgk , rAg,i, QAg,i (Eq.

3).
25: end if
26: end for
27: end for
28: sk ← sk+1, sAgk ← sAgk+1.
29: end for

It is noteworthy that MASCO assumes: (i) Communication:
Agents must be able to communicate with all friendly agents
Ag ∈ G at all decision steps, as their local states and rewards
are needed; (ii) Knowledge of other friendly agents: The
local agent must know how many reward functions all agents
in G have to initialize the correct number of Q-tables. As
agents create all Q-tables in function of local actions, friendly
agents may have different action sets and state spaces. Thus,
MASCO can be used in heterogeneous MAS; (iii) Friendly
Agents Discovery: Agents must be able to recognize the set
of friendly agents G. In domains, such as in this article, where
the spacial distance affects the agent communication abilities,
G can be defined as a set of neighbors agents.

Coordinated Charging RL Modeling

Here, we define how to model the coordinated charging
problem as an MOPOSG to solve with MASCO. All defini-
tions are for a single local agent Agj and the overall space is
composed of the space of each agent.

The local state is established according to the following
information that is available to the agent in all time steps:

1) Current Battery Level – The agent’s state of charge.
This variable is discretized in slots of 20% of the full
charge, i.e. B = {0 − 20%, 20 − 40%, . . . , 80 − 100%},
and can be affected by a charge action, which recharges
the battery, or a daily journey, which consumes energy.

2) Current Time – The current time of the day. The time is
given in slots of t minutes, which was defined as t = 15
in this article. Thus Θ = {0 : 0, 0 : 15, . . . , 23 : 45}.

3) Transformer Load – The transformer load in the last
time step. The load is received through communication
with the transformer in kW, and is discretized in: (i)
LOW – up to 60% of the maximum desired load; (ii)
MEDIUM – between 60% and 80% of the maximum
desired load; (iii) HIGH – between 80% and 100%
of the maximum desired load; and (iv) OV ER – any
load greater than the previously defined intervals. Hence
ζ = {LOW,MEDIUM,HIGH,OV ER}.

4) Location – An EV can be either at home or traveling.
Thus L = {at home, traveling}.

According to these state variables, the complete local state
space is defined as Sj = B×Θ×ζ×L. Zj is composed of the
state space from the agents that Agj can observe, including
itself. The discretization of the state space makes the learning
process faster and less sensitive to noise [27]. Although a fine
discretization may increase accuracy, it increases the number
of states and consequently, it would require a lot of space to
store all tables and much more learning trials to learn a policy.
Local action space is composed of Aj = {charge, not charge}.

The transition function P (sk,dk,uk+1, sk+1) models how
the environment reacts. As we are modeling a learning prob-
lem, agents do not know P and must learn how to actuate in an
unknown environment. Reward functions should indicate the
desirability of a state for a given objective [16]. In other words,
desirable states should receive higher rewards and how much
a state is desirable depends on prior knowledge. In this article,
each objective is encoded by the following reward functions:

• Battery Level – This reward encodes the user satisfaction of
having the battery in a high level. The reward awarded by the
agent is +10 for each 20% of the battery charge the agent
has available. That is, when less than 20% of the battery is
available the agent receives 0 of reward, and when the battery
level is above 80% the agent receives +40.

• Price Paid – The second reward intends to minimize the
energy costs. Let ρ be the energy price per kWh at k, the
reward is defined by r2 = 1

ρ×c , where c is the energy
consumed (in kWh) by the agent at k. That is, the reward is
greater when the costs are smaller. In case of c = 0 (the agent
is not charging), this reward returns a value correspondent to
c equals to the EV typical energy consumption and ρ equals
to an average price defined by the consumer or designer (i.e.,
if the current price is above the average price, the agent would
prefer to wait until a cheaper period is available).

• Transformer Overload – The last reward avoids transformer
overloads. If the transformer is in an overload status and
the agent is charging, it receives a reward of 0. In case the



SUBMITTED TO IEEE TRANSACTIONS ON SMART GRID, 2019. 7

transformer load is within the desired bounds or the agent is
not charging, the received reward is +50.

VII. EXPERIMENTAL EVALUATION

We perform an empirical evaluation in a simulation based
on real-world data to show that MASCO is an appropriate
approach to learn policies in the coordinated charging problem.
We evaluate the behavior of a small scale MAS, which is
similar to the study cases of [14], [23], [28]. A transformer
provides with safety a maximum of 40kWh for a neighborhood
of 30 households, each with one EV. Using the Nissan Leaf as
a reference, the EVs batteries have a capacity of 24kWh [8].
We assume that consumers daily travel follows the Danish
driving pattern analyzed in [29], i.e., the average distance
traveled by an EV is 42.7 km per day. We assume that the
spent energy is defined as 0.11 kWh/km. The charging rate of
the EV is considered as 2.3kWh and we assume that people
leave home at around 7 AM and get home at roughly 6 PM.
Finally, we defined the time step t = 15 minutes.

We evaluate two scenarios: Dynamic price (Danish) and
Time-of-use tariff (Brazilian). For the former we downloaded
the real Danish hourly energy price between January 1st and
June 16th of 2016 from NordPollSpot5, and for the latter we
use the Brazilian time-of-use tariff based on [9]6. Because of
the lack of an evaluation of the Brazilian driving pattern we
apply the Brazilian tariff in the same Danish driving pattern.
The following algorithms/strategies are evaluated:

• MASCO – Our proposal is evaluated with different user pref-
erences, given by w: (i) MASCOpr – the consumer is only
concerned in minimizing her energy costs, hence w = [0, 1, 0];
(ii) MASCObal – the consumer is concerned equally in all
objectives, thus w = [1, 1, 1]; and (iii) MASCOpt – EVs
are expected to minimize costs while avoiding overloads, thus
w = [0, 1, 1]. All experiments are executed with parameters
α = 0.2, γ = 0.99, ε = 0.2, and C = 1.

• Always Charging Policy (ACP) – Whenever plugged, all
agents charge their batteries. ACP is expected to cause high
demand peaks at when the consumers are coming back home.

• Random Policy (RP) – Each EV completely ignores all other
agents and has 50% of probability of using the charge action.
As the available time to recharge is more than enough to fill
the agents batteries, this policy is expected to cause smaller
demand peak than ACP while providing enough energy to
daily travels. However, the energy costs should be only slightly
better than ACP since the current energy price is ignored.

• DWL – DWL is a state-of-the-art Multiagent RL similar to
MASCO. The difference between the two lies in the preference
vector, which can not be specified in DWL, unlike MASCO
that can define the vector according to consumer preferences.
We execute all experiments with parameters α = 0.2, γ =
0.99, ε = 0.2, and C = 1.

In this work we do not consider the domestic energy
consumption and only evaluate the effect of these different

5http://www.nordpoolspot.com/
6Cheapest period between 10PM and 5PM; intermediate period between

5PM and 6PM, and between 9PM and 10PM; and most expensive period
between 6PM and 9PM.

policies on the EVs energy demand. We consider a ring
topology, thus G is assembled as the previous and posterior
agent, which means that EVs make their decision without
information regarding the majority of agents in the system.
Consequently, each agent has a pair of Q and W tables for
selfish optimization and a pair for each agent in G.

For all algorithms, we execute 800 days of learning un-
til evaluating the final policy. This procedure was repeated
25 times to define the average performance. As all agents
recharged enough for their daily travel in all experiments and
for all algorithms, here we omit further analysis regarding the
state of charge and focus in metrics in which the algorithms
achieved different performances.

All experiments were implemented in BURLAP7.

A. Brazilian Tariff Experiment

Figure 2 shows the transformer load per hour in a day, after
800 days of training. ACP causes a high transformer load
in the peak hours, which shows that “dumb” charging is not
adequate and it is prone to cause instabilities in the grid. The
peak hour is when most of EVs have already arrived home
at approximately 7PM. RP avoids overloads because EVs
are roughly taking turns to charge (50% charging probability
while the battery is not full), causing a moderate size peak
when all EVs are at home. DWL has a load profile similar to
RP, with a moderate size load in the peak hour. MASCOpr
agents avoid to charge right after arriving home, which is
depicted by the low charge between 7PM and 11PM. However,
when the lower energy price period begins at 11PM , agents
instantaneously start to charge their batteries, causing a high
energy demand until all agents have charged their batteries.
This behavior reflects the consumer preference to buy energy
in the cheapest period, however, it only shifted the transformer
load peak to when the energy price is lower. MASCObal
causes a moderate peak when the EVs are arriving home but
in average no overloads happen. The agents remain charging
in a safe pace until nearly all EVs have their battery full, and a
small peak is caused near 7AM by some EVs recharging when
most cars have already gone to their daily journey. Finally,
MASCOpt maintains a low load during the high cost period
(6PM - 11PM). At 11PM the transformer load is increased but
the overload limit is not exceeded in average. It is noteworthy
that EVs behavior corresponds to the defined preferences in
all cases. Also, when the preference takes into account the
transformer load, MASCO is able to avoid overloads while
allowing EVs to recharge their batteries.

Table I summarizes the performance of each algorithm.
The numbers are averages from 25 executions with the 95%
confidence interval. Numbers in bold and in red correspond to
the best and the worst performance achieved by all algorithms
in that metric, respectively. The algorithm name in bold
corresponds to the best performance overall. ACP achieved
the worst performance in both metrics, causing overloads and
charging EVs with higher prices. RP does not causes many
overloads, but the energy costs are worse than DWL and
MASCO with any of the evaluated preferences. As noted in

7http://burlap.cs.brown.edu/index.html
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Fig. 2. Average Transformer Load observed in 5 days after 800 days of
training. The shaded area represents the 95% confidence interval over 25
repetitions. The dashed line corresponds to the maximum desired load.

[23], DWL cannot be customized to meet consumer pref-
erences, and by the observed results it chose to prioritize
the battery and transformer objectives, which achieves results
comparable with RP. MASCOpr achieved the cheapest en-
ergy price, however its number of overload is only lower than
ACP. MASCOpt achieved a slightly higher cost, however,
the number of overload was very low during the simulation,
which is the best performance in load balancing among all the
evaluated algorithms in this experiment (together with RP).
The results achieved by MASCObal indicate that EVs try
to charge their batteries faster than MASCOpt. As there is
plenty of time to wait for a cheapest period, MASCObal
would only achieve the best performance if the consumer had
the profile of using the EV for much more time during the
day, situation in which a faster recharging would be needed.

TABLE I
AVERAGE ENERGY COSTS AND NUMBER OF OVERLOADS PER DAY AFTER

TRAINING FOR THE BRAZILIAN TARIFF EXPERIMENT.

Alg. Costs (R$) Over.
ACP 4.07± 0.01 8.40± 0.21
RP 3.74± 0.02 0.20 ± 0.21
DWL 3.56± 0.04 0.72± 0.59
MASCOpr 1.97 ± 0.10 5.00± 0.76
MASCObal 2.90± 0.07 1.08± 0.58
MASCOpt 2.33± 0.09 0.20 ± 0.27

In conclusion, MASCO achieved the best performance
among the algorithms in this experiment, and MASCOpt is
the best option to balance load while minimizing costs.

B. Danish Tariff Experiment

Figure 3 depicts the observed transformer load per hour in
a day after the training phase. ACP and RP have the same
performance as in Section VII-A because their policies are
fixed. DWL has a transformer load profile similar to RP, in
which a moderate peak is caused when EVs come home.
MASCOpr and MASCObal caused a more accentuated load
during peak hours. This outcome is unexpected, since this
preference prioritizes only price but is not able to learn how
to recharge in cheapest periods. It means that energy price
is highly variable and agents take longer to learn the best
charging hours. However, note that MASCOpr has more EVs

recharging between 0AM and 4AM (the cheapest period). This
means the algorithm is slowly learning how to reduce costs,
even though the price is highly variable. MASCOpt causes
the lower load during peak hours, slowly decreasing the load
until 3AM, when all agents have recharged.

Fig. 3. Average Transformer Load observed in 5 days after 800 days of
training. The shaded area represents the 95% confidence interval over 25
repetitions. The dashed line corresponds to the maximum desired load.

Table II summarizes results. The numbers are averages from
25 executions with the 95% confidence interval. Numbers
in bold and in red correspond to the best and the worst
performance achieved by all algorithms in that metric, re-
spectively. The algorithm name in bold corresponds to the
best performance overall. MASCOpr achieved worse overall
results than RP, since a slightly lower price is achieved only
through a high addition of overloads. RP achieved surprising
results when compared to DWL and MASCOpr, meaning
that following only the price is ineffective and achieves results
comparable to a random actuation. MASCObal achieved the
best performance in terms of cost, however, causing a high
number of overloads. Finally, although very similar to DWL,
MASCOpt achieves the best result overall.

TABLE II
AVERAGE ENERGY COSTS AND NUMBER OF OVERLOADS PER DAY AFTER

TRAINING FOR THE DANISH TARIFF EXPERIMENT.

Alg. Costs (DKK) Over.
ACP 0.781± 0.003 8.40± 0.21
RP 0.726± 0.003 0.20 ± 0.21
DWL 0.713± 0.007 0.48± 0.38
MASCOpr 0.727± 0.005 2.80± 0.84
MASCObal 0.633 ± 0.010 3.76± 0.67
MASCOpt 0.711± 0.005 0.40 ± 0.21

This two experiments show that MASCO is a robust archi-
tecture that achieved the best results amongst the evaluated
algorithms in both tariffs. We conclude our article and discuss
possible further work in the next section.

VIII. CONCLUSION AND FURTHER WORKS

In this work we proposed a Multiagent System architecture
that allows EVs to recharge their batteries while minimizing
energy costs and avoiding transformer overloads. Our archi-
tecture, called MASCO, is based on Multiagent Reinforcement
Learning and learns how to alternate between a selfish policy
that maximizes local objectives, and a collaborative policy that
intends to help other agents to improve their performance.
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MASCO makes minimal assumptions regarding the distri-
bution grid and thus can be used together with many actual
distribution infrastructures. Differently from many previous
methods, MASCO does not require a manual setting of the
required energy for the consumer daily travel, that is not
assumed to be available to the EV. Also, MASCO can work
in systems composed of agents following different strategies.

We experimentally showed that MASCO allows to balance
energy costs and avoid transformer overloads, while following
consumer preferences. In our experiments, MASCO achieved
the best performance in both dynamic and time-of-use tariffs
among the evaluated algorithms. This outcome shows that
our architecture is a promising way to solve the Coordinated
Charging Problem. This work can be extended along different
lines, and future efforts can focus on:

• Integration with Energy Management Systems (EMS): An
EMS allows the consumer to generate, buy, and sell
energy in order to minimize costs or profit from the
energy market. EVs are adequate energy storage devices,
and further work can propose an EMS that takes into
account the problems here discussed, which are inherently
associated with EVs, to plan and act.

• Scaling Up MASCO: MASCO is already a distributed and
scalable approach, however, this can be further improved
by the use of relational techniques to state space gener-
alization [30], or value function approximation [31].

• Reuse of Knowledge: In a real-world situation, new EVs
will join neighborhoods in which already trained agents
are actuating. In this situation the knowledge from expert
EVs can be shared with newcomers [32]. Taylor et al.
[28] proposed a Transfer Learning [33] approach to share
knowledge amongst agents, but this approach needs to be
further improved to be used in real-world applications.
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